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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing simple 

and organized study content to all the learners. The SLMs are prepared on the 

framework of being mutually cohesive, internally consistent and structured as 

per the university’s syllabi. It is a humble attempt to give glimpses of the 

various approaches and dimensions to the topic of study and to kindle the 

learner’s interest to the subject 

 

We have tried to put together information from various sources into this book 

that has been written in an engaging style with interesting and relevant 

examples. It introduces you to the insights of subject concepts and theories and 

presents them in a way that is easy to understand and comprehend.  

 

We always believe in continuous improvement and would periodically update 

the content in the very interest of the learners. It may be added that despite 

enormous efforts and coordination, there is every possibility for some omission 

or inadequacy in few areas or topics, which would definitely be rectified in 

future. 

 

We hope you enjoy learning from this book and the experience truly enrich 

your learning and help you to advance in your career and future endeavours. 
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8.0 Objectives 

8.1 Introduction  

8.2 Elementary Functions…. The Exponential Function 

8.3 The Logarithmic Function 

8.4 Branches And Derivatives Of Logarithms 

8.5 Some Identities Involving Logarithms 

8.6 Complex Exponents 

8.7 Trigonometric Functions 

8.8 Hyperbolic Functions 

8.9 Inverse Trigonometric And Hyperbolic Functions 

8.10 Let Us Sum Up   

8.11 Keywords   

8.12 Questions For Review   

8.13 Answers To Check Your Progress 

8.14 References  

 

8.0 OBJECTIVES 

After studying this unit, you should be able to: 

 

Learn, Understand about Elementary Functions….. The Exponential 

Function 

The Logarithmic Function 

Branches And Derivatives Of Logarithms 
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Some Identities Involving Logarithms 

Complex Exponents 

Trigonometric Functions 

Hyperbolic Functions 

Inverse Trigonometric And Hyperbolic Functions 

8.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis .  

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable ,  

Elementary Functions, The Exponential Function, Logarithmic Function, 

Branches And Derivatives Of Logarithms, Some Identities Involving 

Logarithms, Complex Exponents, Trigonometric Functions, Hyperbolic 

Functions, Inverse Trigonometric And Hyperbolic Functions 

 

8.2 ELEMENTARY FUNCTIONS 

We consider here various elementary functions studied in calculus and 

define corresponding functions of a complex variable. To be specific, we 

define analytic functions of a complex variable z that reduce to the 

elementary functions in calculus when z=x + i0. We start by defining the 

complex exponential function and then use it to develop the others. 

 

 THE EXPONENTIAL FUNCTION 

As anticipated earlier define here the exponential function ez by writing 

e
z
 =  e

x
e

i y
 ( z  =  x  +  i y )  where Euler's formula 

e
i y

 =  cos y  +  i  sin y   
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is used and y is to be taken in radians. We see from this definition that ez 

reduces to the usual exponential function in calculus when y=0 ; and, 

following the convention used in calculus, we often write exp z for ez. 

Note that since the positive nth root ife of e is assigned to ex when x=1/n 

(n =2,3,...), expression tells us that the complex exponential function ez 

is also life when z=1/n (n=2, 3,...). This is an exception to die convention 

that would ordinarily require us to interpret e
1/n

 as the set of nth roots of 

e. 

According to definition e
x
e

iy
=e

X+iy
; and, as already pointed out in the 

definition is suggested by the additive property 

eX1 eX2 — eX1+X2 

of e
X

 in calculus. That property's extension, 

e
X1

 e
X2

 — e
X1+X2

 

of eX in calculus. That property's extension, 

e
z1

 e
z2

 = e
z1+Z2

, 

to complex analysis is easy to verify. To do this, we write 

Z1 = X 1 +  i y 1  and Z2 = *2 + iy2-  

Then 

e
z1

 e
z2

 = (e
X1

 e
iy1

 ) ( e
X 2

 e
i y 2

) = (e
X1

 e
X2

 )(e
iy1

 e
iy2

). 

But X1 and X2 are both real, and we know  

eiy1 eiy2 = ei(y1 +y2). 

ez1 ez2  =  e(X1 +X2 ) ei(y1 +y2 ) .  

(X1 + X2) + i(y1 + y2) = (X1 + iy1)  +  ( X 2 +  i y 2) =  Z 1  +  

Z 2 , 

the right-hand side of this last equation becomes ez1+Z2. Property is now 

established. 
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Observe how property enables us to write e
z1-

Z2 e
z2

=e
z1

, or 

e
z1

/ e
z2

=e
Zl~

Z2. 

From this and the fact that e0=1, it follows that 1/e
z
=e

-z
. 

There are a number of other important properties of ez that are expected. 

According to Example,  for instance, 

d/dz e
z
=e

z
 

everywhere in the z plane. Note that the differentiability of ez for all z 

tells us that e
z
 is entire It is also true that 

e
z
=0 for any complex number z. 

This is evident upon writing definition in the form 

e
z
=pe

iθ
 where p=e

X
 and θ=y,  

which tells us that 

|e
z
|=e

x
 and arg(e

z
)=y + Inn (n=0, ±1, ±2,...). 

Statement then follows from the observation that \ez\ is always positive. 

Some properties of ez are, however, not expected. For example, since 

e
z+2ni

=e
z
 e

2ni
 and e

2ni
=1, 

we find that ez is periodic, with a pure imaginary period of 2ni: 

e
z+2ni

=e
z
. 

For another property of ez that ex does not have, we note that while ex is 

always positive, ez can be negative for instance, that e
in

=—1. In fact, 

e
i(2n+1)n

=e
i2nn+in

=e
i2nn

e
in

=(1)(—1)=-1 (n=0, ±1, ±2,...). 

There are, moreover, values of z such that ez is any given nonzero 

complex number. This is shown in the next section, where the 

logarithmic function is developed, and is illustrated in the following 

example. 

EXAMPLE. In order to find numbers z=x + iy such that 
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e
z
=1 + i, we write equation as 

e
x
e

iy
=√2e

in/4
. 

Then, in view of the statment in italics at the beginning of regarding the 

equality of two nonzero complex numbers in exponential form, 

x=ln√2 and y=(2n+1/4)n       (n=0, ±1, ±2,...). 

Because ln(ex)=x,  

Let the function f(z)=u(x,y) + iv(x, y) be analytic in some domain D. 

State why the functions 

U(x, y)=eu(x'y) cos v(x, y), V(x, y)=eu(x'y) sin v(x, y) 

are harmonic in D and why V(x,y) is, in fact, a harmonic conjugate of 

U(x,y). 

Establish the identity 

(ez)n=enz (n=0, ±1, ±2,...) 

in the following way. 

Use mathematical induction to show that it is valid when n=0, 1, 2,... . 

Verify it for negative integers n by first recalling from Sec. 7 that 

zn=(z-1)m (m=—n=1, 2,...) 

when z=0 and writing (ez)n=(1 /ez)m. Then use the result in part (a), 

together with the property 1 /ez=e—z of the exponential function. 

 

8.3 THE LOGARITHMIC FUNCTION 

Our motivation for the definition of the logarithmic function is based on 

solving the equation 

e
w
=z 
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for w, where z is any nonzero complex number. To do this, we note that 

when z and w are written z = re
1
© (—n < © < n)  and w=u + iv, 

equation becomes 

e
u
e

iv
 = re

1
©. 

According to the statement in italics at the beginning about the equality 

of two complex numbers expressed in exponential form, this tells us that 

e^u=r and v=θ + 2nn 

where n is any integer. Since the equation eu=r is the same as u=ln r, it 

follows that equation is satisfied if and only if w has one of the values 

w  =  lnr  +  i ( ©  +  2 n n )  ( n  =  0, ±1, ±2,...). 

Thus, if we write 

logz = lnr  +  i ( ©  +  2 n n )  ( n  =  0, ±1, ±2,...), equation tells us that 

e
log z

 = z (z = 0), 

which serves to motivate expression as the definition of the (multiple-

valued) logarithmic function of a nonzero complex variable z = re
1
©. 

EXAMPLE 1. If z  =  1 3i  ,  then r  =  2  and © = — 2 n / 3 .   

Hence 

      Log 1 3i  =hi2 + i — + 2/7iz^=hi2 + 2^n — ni 

      (n=0, ±1, ±2,...). 

It should be emphasized that it is not true that the left-hand side of 

equation with the order of the exponential and logarithmic functions 

reversed reduces to just z. More precisely, since expression can be 

written 

logz=ln |z| + i argz 

and since  
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|e
z
|  =  e

1
 and arg(e

z
) =  y +  2nn (n = 0, ±1, ±2,...) 

when z = x + iy, we know that 

log(e
z
) = ln |e

z
| + i  arg(e

z
) = ln(e

x
) +  i ( y  + 2 n n )  = ( x  + 

i y )  + 2 n n i  

( n  = 0, ±1, ±2,...) 

That is, 

log(e
z
) = z +  2nni (n = 0, ±1, ±2,...). 

The principal value of log z is the value obtained from equation (2) 

when n = 0 there and is denoted by Log z. Thus 

Log z = ln r  + i ® .  

Note that Log z  is well defined and single-valued when z  = 0 and that 

logz = Logz +  2nni (n = 0, ±1, ±2,... ) .  

It reduces to the usual logarithm in calculus when z  is a positive real 

number z  =  r .  To see this, one need only write z = re'
0
, in which case 

equation becomes Logz = ln r. That is, Log r = ln r. 

EXAMPLE. From expression we find that 

log 1 = ln 1 +  i ( 0  + 2 n n )  = 2nni (n = 0, ±1, ±2,... ) .  As anticipated, 

Log 1=0. 

Our final example here reminds us that although we were unable to find 

logarithms of negative real numbers in calculus, we can now do so. 

EXAMPLE. Observe that log(—1)=ln 1 + i(n + 2nn)=(2n + 1)ni (n=0, 

±1, ±2,...) and that Log (—1)=ni. 

 

8.4 BRANCHES AND DERIVATIVES OF 

LOGARITHMS 
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If z  = r e
6

 is a nonzero complex number, the argument Q  has any one 

of the values Q = © + 2nn (n = 0, ±1, ±2,...), where © = Arg z. Hence 

the definition 

logz = ln r  + i ( ©  + 2 n n )  ( n  = 0, ±1, ±2,... )  

of the multiple-valued logarithmic function in Sec. 30 can be written 

log z = ln r  + i Q .  

If we let a  denote any real number and restrict the value of Q  in 

expression so that a < Q < a + 2n, the function 

logz = ln r  + i Q  ( r  >  0 ,  a  <  Q  <  a  + 2 n ) ,  with components 

u ( r , Q )  = ln r  and v ( r , Q )  = Q ,  

is single-valued and continuous in the stated domain. Note that if the 

function were to be defined on the ray θ=a, it would not be continuous 

there. For if z is a point on that ray, there are points arbitrarily close to z 

at which the values of v are near a and also points such that the values of 

v are near a + 2n. 

A branch of a multiple-valued function f is any single-valued function F 

that is analytic in some domain at each point z of which the value F (z) is 

one of the values of f. The requirement of analyticity, of course, prevents 

F from taking on a random selection of the values of f. Observe that for 

each fixed a, the single-valued function is a branch of the multiple-

valued function  The function 

Logz = ln r  +  i &  ( r  >  0, —  n  <  &  <  n )  

is called the principal branch. 

A branch cut is a portion of a line or curve that is introduced in order to 

define a branch F of a multiple-valued function f. Points on the branch 

cut for F are singular points of F, and any point that is common to all 

branch cuts of f is called a branch point. The origin and the ray Q=a 

make up the branch cut for the branch of the logarithmic function. The 

branch cut for the principal branch consists of the origin and the ray 

&=n. The origin is evidently a branch point for branches of the multiple-

valued logarithmic function. 
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Special care must be taken in using branches of the logarithmic function, 

especially since expected identities involving logarithms do not always 

carry over from calculus. 

EXAMPLE. When the principal branch is used, one can see that 

Log(i
3
)=3 Log i. 

We shall derive some identities involving logarithms that do carry over 

from calculus, sometimes with qualifications as to how they are to be 

interpreted.  

 

8.5 SOME IDENTITIES INVOLVING 

LOGARITHMS 

If Z1 and Z2 denote any two nonzero complex numbers, it is 

straightforward to show that 

log(Z1Z2)=log Z1 + log Z2 

This statement, involving a multiple-valued function, is to be interpreted 

in the same way that the statement 

arg(Z1Z2)=arg Z1 + arg Z2 

That is if values of two of the three logarithms are specified, then there is 

a value of the third such that equation holds. 

The verification of statement can be based on statement in the following 

way. Since |Z1z2|=|Z1||Z2| and since these moduli are all positive real 

numbers, we know from experience with logarithms of such numbers in 

calculus that 

ln |Z1Z2|=ln |Z1| +ln |Z2| 

So it follows from this and equation that 

ln |Z1Z2| + i arg(Z1 Z2)=(ln |Z1| + i arg Z1) + (ln |Z2| + i arg Z2). 

Finally, because of the way in which equations and are to be interpreted 
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EXAMPLE. To  Z1=Z2=—1 and recall from log i=2nni and log(—1)=(2n 

+ i)ni, 

where n=0, ±i, ±2,.... Noting that Z1Z2=1 and using the values 

log(Z1z2)=0 and log Z1=ni, we find that equations is satisfied when the 

value logz2=ni is chosen. If, on the other hand, the principal values 

Logl=0 and Log(—1)=ni 

are used, 

Log(z1Z2) = 0 and Log Z1 + log Z2 = 2ni 

for the same numbers Z1 and Z2. Thus statement, which is sometimes true 

when log is replaced by Log, is not always true when principal values are 

used in all three of its terms 

Verification of the statement 

We include here two other properties of log z that will be of special 

interest in f z is a nonzero complex number, that (n=0 ± 1, ±2,...) for any 

value of log z that is taken. When n=1, this reduces, of course, to relation 

is readily verified by writing  and noting that each side becomes r
n
e

inθ
. 

It is also true that when z=0, That is, the term on the right here has n 

distinct values, and those values are the nth roots of z. To prove this, we 

write z=r exp(iθ), where θ is the principal value of arg z.  

Because exp(i2kn/n) has distinct values only when k=0, 1,... ,n — 1, the 

right hand side of equation has only n values. That right-hand side is, in 

fact, an expression for the nth roots of z, and so it can be written Z1/n. 

This establishes property, which is actually valid when n is a negative 

integer too. 

 

Exercise :  

 

Show that property also holds when n  is a negative integer. Do this by 

writing z
i/n

 = (Z1
/m

)
—1

 (m = —n), where n has any one of the negative 
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values n = — i, —2, ...  and using the fact that the property is already 

known to be valid for  positive integers. 

Let z denote any nonzero complex number, written z  =  r e
1
© (—n  <  

©  < n ) ,  and let n denote any fixed positive integer (n = i, 2,...). Show 

that all of the values of log(z
i/n

) are given by the equation 

, ,  1  /,„ 
1
 ,  ,  •© +  2 ( p n +k) j r  

log(z ' ) = - In r  + ;  --------- ,  

n n  

where p =  0, ±i, ±2,. . .  and k =  0, i, 2, .. . ,n —  i. Then, after writing 

i i © + 2qn 

- logz = - lnr + / --------- , 

n  n  n  

where q  =  0, ±i, ±2,. . . ,  show that the set of values of log(z
i/n

) is 

the same as the set of values of (i/n) logz. Thus show that log(z
i/n

) = 

(i/n) logz where, corresponding to a value of log(z
i/n

) taken on the 

left, the appropriate value of logz is to be selected on the right, and 

conversely 

Suggestion: Use the fact that the remainder upon dividing an integer by a 

positive integer n is always an integer between 0 and n — i, inclusive; 

that is, when a positive integer n is specified, any integer q can be written 

q = pn + k, where p is an integer and k has one of the values k = 0, i, 

2,...,n — i. 

 

8.6 COMPLEX EXPONENTS 

 

When z=0 and the exponent c is any complex number, the function zc is 

defined by means of the equation 

zc=ec log z, 
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where log z denotes the multiple-valued logarithmic function. provides a 

consistent definition of zc in the sense that it is already known to be valid 

when c=n (n=0, ±1, ±2,...) and c=1/n (n=±1, ±2,...). Definition is, in fact, 

suggested by those particular choices of c. 

EXAMPLE . Powers of z are, in general, multiple-valued, as illustrated 

by writing 

i
2i

=exp(-2i log i) 

and then 

log i=In 1 + i(n/2 + 2nn)=(2n+1/2)ni 

This shows that 

i
-2i

=exp[(4n + 1)n]      (n=0, ±1, ±2,...). 

Note that these values of i
-2i

 are all real numbers. 

Since the exponential function has the property 1/ez=e-z  one can 

see that  

1/z
e
 

Exp(-c log z)=z
-e

 

and, in particular, that 1/i
2i

=i
-2i

. According to expression then, 

i
-2i

=exp[(4n + 1)n]      (n =0, ±1,±2,...). 

If z=re
iθ 

and a is any real number, the branch 

logz=ln r + id (r > 0, a < θ < a + 2n) 

of the logarithmic function is single-valued and analytic in the indicated 

domain When that branch is used, it follows that the function zc=exp(c 

logz) is single-valued and analytic in the same domain. The derivative of 

such a branch of z
c
 is found by first using the chain rule to write 

d/dz z
c
= c exp |(c-l)ogz| 

and then recalling the identity z=exp(logz). That yields the result 
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d/dzz
c
=cz

c-1
 

The principal value of z
c
 occurs when log z is replaced by Log z in 

definition  

P.V. z
c
=e

cLog z
. 

Equation also serves to define the principal branch of the function zc on 

the domain |z| > 0, — n < Arg z < n. 

EXAMPLE. The principal branch of Z2
/3

 can be written 

expQLog ^ = expQlnr + = ^exp^
-
^^. 

Thus 

P.V. z
l !/3

 = -v^ cos ^ + i\/r^sin 

This function is analytic in the domain r > 0, —n<θ<n, as one can see 

directly 

While familiar laws of exponents used in calculus often carry over to 

complex analysis, there are exceptions when certain numbers are 

involved. 

EXAMPLE. Consider the nonzero complex numbers 

Z1=1 + i, Z2=1 — i, and z3=— 1 — i. 

When principal values of the powers are taken 

 

( z 1 z 2  )  = 2  = e
iLog2

 = e
i(ln2

+
i0)

 = e
ln2

 

and 

T'J = g
!
'
L
°g

(1
+!) _ y (In \ f2-\-iJT /4) _ e-jr/4gr(ln2)/2^ T

!
2 = 

g
!
'
L
°g

(1
-0 _ y (In sfZ—iir/4) _ eJr/4g!(ln2)/2^ 

Thus 

(Z1Z2)
1
 = z\z\, 

as might be expected. 
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On the other hand, continuing to use principal values, we see that 

(Z2Z3Y = (-2Y = e
iLo

g
( -2 )

 = ei
( ln 2

+i
n )

 = e
-n

ei
ln2

 

and 

= g
!
'
Lo

g(-
1_!

') = g
!
'<

bl
 \/2-I'3JT/4) _ e3jr/4g!(ln2)/2^ 

Hence 

(z2z3) =  \e
n/4

e
i(ln2)/2

] [e
3n/

V'
(ln2)/2

] e
-2n

, 

or 

(z2z3)' =  Z'2Z3 e
-2n

. 

According to definition, the exponential function with base c, where c is 

any nonzero complex constant, is written 

c
z
=e

z log c
. 

Note that although ez is, in general, multiple-valued according to 

definition the usual interpretation of ez occurs when the principal value 

of the logarithm is taken. This is because the principal value of log e is 

unity. 

When a value of log c is specified, c
z
 is an entire function of z. 

Exercise  

Show that if z  =  0 and a  is a real number, then \ z
a
 | = exp(a ln |z|) = 

\ z \
a
, where the principal value of \z\

a
 is to be taken. 

Let c  =  a  +  b i  be a fixed complex number, where c  =  0, ±1, ±2,. . . ,  

and note that i
c
 is multiple-valued. What additional restriction must be 

placed on the constant c so that the values of \i
c
\ are all the same Ans. c is 

real. 

Let c ,  c 1 ,  c2 ,  and z  denote complex numbers, where z  =  0. Prove 

that if all of the powers involved are principal values, then 

z
c
1 

(a)  z
c
U

C2
 = z

cl+C2
; (b) —  = z

cl
~

C2
; 

(c) (z
c
)" = z

c
" (n = 1,2,.. .) .  z

c2
 

Assuming that f  ' ( z )  exists, state the formula for the derivative of c
f ( z )

.  
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8.7 TRIGONOMETRIC FUNCTIONS 

 

Euler's formula tells us that 

e'
x
 = cosx  +  i  sinx and e ~

t x
 =  cos x  —  

i  sinx  for every real number x. Hence 

e'
x
 — e~

tx
 = 2i sinxand e '

x
 +  e ~ '

x
 =  2cosx. 

That is, 

S i n  i  =  ( e i x  e —ix)/2i  

 

C o s  v  = ( e ^x  _|_ e — ^
x
)/2 

It is, therefore, natural to define the sine and cosine functions of a 

complex variable z as follows: 

eiz - e-iz eiz + e-iz  

It is easy to see from definitions that the sine and cosine functions remain 

odd and even, respectively: 

sin(-z)=- sin z, cos(-z)=cos z. 

Also, 

eiz=cos z + i sinz. 

This is, of course, Euler's formula when z is real. 

A variety of identities carry over from trigonometry.  

sin(Z1 + Z2)=sin Z1 cos Z2 + cos Z1 sin Z2, 

cos(Z1 + Z2)=cosz1 cos Z2 - sinz1 sinz2. 

From these, it follows readily that 

sin2z = 2 sin z  cos z ,  cos2z = cos
2
 z  —  sin

2
 z ,  
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sin
2
 z + cos

2
 z  =  1. 

The periodic character of sin z and cos z is also evident: 

sin(z + 2n)=sin z, sin(z + n)=— sin z, 

cos(z + 2n)=cos z, cos(z + n)=—cos z. 

When y is any real number, definitions and the hyperbolic functions 

sin(iy)=i sinhy and cos(iy)=coshy. 

Also, the real and imaginary components of sin z and cos z can be 

displayed in terms of those hyperbolic functions: 

sin z=sin x cosh y + i cos x sinh y, 

cos z=cos x cosh y — i sin x sinh y, where z=x + iy. To obtain 

expressions, we write 

Z1=x and Z2=iy 

derivative of a function 

f(z)=u(x, y) + iv(x, y) exists at a point z=(x,y), then 

f '(z)=Ux(x, y) + ivx(x, y). 

| sinz|2=sin2 x + sinh2 y, 

| cosz|2=cos2 x + sinh2 y. 

Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from 

these two equations that sin z and cos z are not bounded on the complex 

plane, whereas the absolute values of sin x and cos x are less than or 

equal to unity for all values of x. A zero of a given function f (z) is a 

number z0 such that f(z0)=0. Since sin z becomes the usual sine function 

in calculus when z is real, we know that the real numbers z=nn (n=0, ±1, 

±2,...) are all zeros of sinz. To show that there are no other zeros, we 

assume that sin z=0 and note how it follows from equation that 

sin2 x + sinh2 y=0. 

This sum of two squares reveals that 
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sin x=0 and sinh y=0. 

Evidently, then, x=nn (n=0, ±1, ±2,...) and y=0; that is, 

sinz=0 if and only if z=nn (n=0, ±1, ±2,...). 

Since n 

cos;=- sin(z) 

according to the second of identities 

cos;=0 if and only if ;=— + nn (n=0, ±1, ±2,...). 

So, as was the case with sin z, the zeros of cos z are all real. 

The other four trigonometric functions are defined in terms of the sine 

and cosine functions by the expected relations: 

tanz = sinz/cosz 

cotz = cosz/sinz 

secz=1/cosz 

cscz=1/sinz  

Observe that the quotients tan z and sec z are analytic everywhere except 

at the singularities  

Z=— + nn (n=0, ±1, ±2,...), 

which are the zeros of cos z. Likewise, cot z and csc z have singularities 

at the zeros of sin z, namely 

z=nn (n=0, ±1, ±2,...). 

By differentiating the right-hand sides of equations, we obtain the 

anticipated differentiation formulas  

The periodicity of each of the trigonometric functions defined by 

equations tan(z + n)=tan z. 
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Mapping properties of the transformation w=sin z are especially 

important in the applications later on. A reader who wishes at this time to 

learn some of those properties is sufficiently prepared.  

 

8.8 HYPERBOLIC FUNCTIONS 

The hyperbolic sine and the hyperbolic cosine of a complex variable are 

defined as they are with a real variable; that is Because of the way in 

which the exponential function appears in definitions of sinz and cos z, 

the hyperbolic sine and cosine functions are closely related to those 

trigonometric functions: 

— i  sinh(iz) = sinz ,  cosh(iz) = cosz ,  

— i  sin(iz) = sinhz ,  cos( i z )  = coshz .  

Some of the most frequently used identities involving hyperbolic 

sine and cosine functions are 

sinh(— z )  = —sinh z ,  cosh(—z )  = cosh z ,  

cosh
2
 z — sinh

2
 z  =  1, 

sinh(Z1 + Z2)  = sinh Z1 cosh Z2 + cosh Z1 sinh Z2,  

cosh(Z1 + Z2) = cosh Z1 cosh Z2 + sinh Z1 sinh Z2 and 

sinh z = sinh x  cos y  +  i  cosh x  sin y ,  

cosh z = cosh x cos y  +  i  sinh x sin y ,  

|sinhz|
2
 = sinh

2
 x + sin

2
 y, 

|cosh z|
2
 = sinh

2
 x + cos

2
 y ,  

 

where z=x + iy. While these identities follow directly from definitions  

are often more easily obtained from related trigonometric identities, with 

the aid of relations. 

EXAMPLE. To illustrate the method of proof just suggested, let us 

verify identity. According to the first of relations, |sinhz|2=|sin(iz)|2. That 

is, 

|sinh z|2=|sin(_y + ix) |2, 
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where z=x + iy. But from equation we know that 

|sin(x + iy)|2=sin2x + sinh2 y ; 

and this enables us to write equation in the desired form. 

In view of the periodicity of sin z and cos z, it follows immediately from 

relaions that sinhz and coshz are periodic with period 2ni. Relations  

together with statements also tell us that 

sinhz=0 if and only if z=nni (n=0, ±1, ±2,...) cosh;=0 if and only if z=^— 

+ nn^i (n=0, ±1, ±2,...). 

The hyperbolic tangent of z is defined by means of the equation 

tanh z =sinh z / cosh z 

and is analytic in every domain in which coshz=0. The functions coth z, 

sech z, and csch z are the reciprocals of tanh z, cosh z, and sinh z, 

respectively. It is straight-forward to verify the following differentiation 

formulas, which are the same as those established in calculus for the 

corresponding functions of a real variable 

 

8.9 INVERSE TRIGONOMETRIC AND 

HYPERBOLIC FUNCTIONS 

Inverses of the trigonometric and hyperbolic functions can be described 

in terms of logarithms. 

In order to define the inverse sine function sin-1 z, we write w=sin-1 z 

when z=sin w. 

That is, w=sin-1 z when 

giw   g—iw 

Z ~ 2i ' 

If we put this equation in the form 

( e
i w

)
2
 —  2i z ( e

i w
)  —  1 = 0, 
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where (1 — Z2)
1/2

 is, of course, a double-valued function of z. Taking 

logarithms of each side of equation and recalling that w=sin
-1

 z, we 

arrive at the expression 

sin
-1

 z=—i log[iz + (1 — Z2)
1/2

]. 

The following example emphasizes the fact that sin
-1

 z is a multiple-

valued function, with infinitely many values at each point z. 

EXAMPLE. Expression tells us that 

sin
_1

(— i ) = —i  log(l ± \ fl).  

But 

log(1 + \ fl)  =ln(l + \ fl)  + 2/771 i (n =  0, ±1, ±2,...) 

and 

log(l - V2) = ln(V2 - 1) + (2/7 + 1)71/ (/7 = 0, ±1, ± 2 , . . . ) .  

Since 

ln( V 2 -  1) = In -----  -  = -ln(l+V2), 

1+ V 2  

then, the numbers 

(— 1)" ln(l +V 2 )  +nn i  (n  = 0, ±1, ±2,...) 

co n stitute the set of values of log(l ± \fl). Thus, in rectangular 

form, 

sin
_1

(— i )  =  rn z  +  /( —1)"
+1

 ln(l + \ f l )  (n  =  0, ±1, ±2,...). 

One can apply the technique used to derive expression for sin-1 z to 

show 

that 

cos
-1

 z=—i log[z + i(1 - Z2)
1/2

]  

The functions cos
-1

 z and tan
-1

 z are also multiple-valued. When specific 

branches of the square root and logarithmic functions are used, all three 
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inverse functions become single-valued and analytic because they are 

then compositions of analytic functions. 

The derivatives of these three functions are readily obtained from their 

logarithmic expressions. The derivatives of the first two depend on the 

values chosen for the square roots: 

— tan z = 

dz ~ 1 + z2' 

does not, however, depend on the manner in which the function is made 

single valued. 

Inverse hyperbolic functions can be treated in a corresponding manner. It 

turns out that 

sinh
-1

 z = log[z + (Z2 + 1)
1/2

 ], 

cosh
-1

 z = log[z + (Z2 - 1)
1/2

], and Finally, we 

remark that common alternative notation for all of 

these inverse functions is arcsin z, etc. 

 

Check your Progress-1 

Discuss Elementary Functions  

________________________________________________________ 

________________________________________________________ 

Discuss Complex Exponents 

________________________________________________________ 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

 

8.10 LET US SUM UP 
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In this unit we have discussed the definition and example of Elementary 

Functions, The Exponential Function, Logarithmic Function, Branches 

And Derivatives Of Logarithms, Some Identities Involving Logarithms, 

Complex Exponents, Trigonometric Functions, Hyperbolic Functions, 

Inverse Trigonometric And Hyperbolic Functions 

 

8.11 KEYWORDS 

Elementary Functions.. In this part of the course we will study some 

basic complex analysis 

 

The Exponential Function We consider here various elementary 

functions studied in calculus and define corresponding functions of a 

complex variable 

 

Logarithmic Function Our motivation for the definition of the 

logarithmic function is based on solving the equation ew=z 

 

Branches And Derivatives Of Logarithms If z=rel9 is a nonzero complex 

number, the argument has any one of the values Some Identities 

Involving Logarithms If Z1 and Z2 denote any two nonzero complex 

numbers, 

Complex Exponents When z=0 and the exponent c is any complex 

number, the function zc is defined by means of the equation zc=ec log z 

 

Trigonometric Functions Euler's formula tells us that etx=cosx + i sinx 

and e~tx=cos x — i sinx for every real number x 
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Hyperbolic Functions The hyperbolic sine and the hyperbolic cosine of a 

complex variable are defined as they are with a real variable; that is 

Because of the way in which the exponential function appears in 

definitions 

 

Inverse Trigonometric And Hyperbolic Functions Inverses of the 

trigonometric and hyperbolic functions can be described in terms of 

logarithms. In order to define the inverse sine function sin-1 z, we write 

w=sin-1 z when z=sin w. 

 

8.12 QUESTIONS FOR REVIEW 

Explain Elementary Functions  

Explain Complex Exponents 

 

8.13 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Elementary Functions   (answer for Check your Progress-1 

Q) 

Complex Exponents  (answer for Check your Progress-1 

Q) 

8.14 REFERENCES 

 Complex Analysis 

 Basic of Complex Analysis 

 Complex Functions & Variables 

 Introduction To Complex Analysis 

 Application Of Complex Analysis & Variables 
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UNIT-9: SERIES 

 

STRUCTURE 

9.0 Objectives 

9.1 Introduction 

9.2 Series 

9.3 Convergence Of Sequence  

9.4 Convergence Of Series 

9.5 Taylor Series 

9.6 Laurent Series 

9.7 Absolute And Uniform Convergence Of Power Series 

9.8 Continuity Of Sums Of Power Series 

9.9 Integration And Differentiation Of Power Series 

9. 10 Uniqueness Of Series Representations 

9.11 Multiplication And Division Of Power Series 

9.12 Let Us Sum Up   

9.13 Keywords   

9.14 Questions For Review   

9.15 Answers To Check Your Progress 

9.16 References  

9.0 OBJECTIVES 

 

After studying this unit, you should be able to: 

 

Learn, Understand about Series 
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Convergence Of Sequence  

Convergence Of Series 

Taylor Series 

Laurent Series 

Absolute And Uniform Convergence Of Power Series 

Continuity Of Sums Of Power Series 

Integration And Differentiation Of Power Series 

Uniqueness Of Series Representations 

Multiplication And Division Of Power Series 

 

9.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis .  

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Series, Convergence Of Sequence, Convergence Of Series, Taylor 

Series, Laurent Series, Absolute And Uniform Convergence Of Power 

Series, Continuity Of Sums Of Power Series, Integration And 

Differentiation Of Power Series, Uniqueness Of Series Representations, 

Multiplication And Division Of Power Series 

   

9.2 SERIES 

This chapter is devoted mainly to series representations of analytic 

functions. We present theorems that guarantee the existence of such 

representations, and we develop some facility in manipulating series. 
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9.3 CONVERGENCE OF SEQUENCES 

 

An infinite sequence 

Z1 ,Z2,---,Zn,... 

of complex numbers has a limit z if, for each positive number e, there 

exists a positive integer n0 such that 

|zn — z| < e whenever n > n0. 

Geometrically, this means that for sufficiently large values of n, the 

points zn lie in any given e neighborhood of z. Since we can choose e as 

small as we please, 

it follows that the points zn become arbitrarily close to z as their 

subscripts increase. Note that the value of no that is needed will, in 

general, depend on the value of e. 

The sequence can have at most one limit. That is, a limit z is unique if it 

exists. When that limit exists, the sequence is said to converge to z ; and 

we write 

lim zn=z. 

If the sequence has no limit, it diverges. 

Theorem. Suppose that zn=xn + iyn (n=1, 2,...) andz=x + iy. Then 

lim zn=z 

if and only if 

lim xn=x and lim yn=y. 

To prove this theorem, we first assume that conditions hold and obtain 

condition from it. According to conditions, there exist, for each positive 

number e, positive integers n\ and n2 such that 

\xn — x\ < - whenever n > n \ 

and 



Notes 

33 

I.Vn — v| < ^ whenever n > «2- 

Hence if no is the larger of the two integers n1 and n2, 

\xn — x\ < - and |y„ — y| < - whenever n > no. 

Since 

\(Xn + iyn) - (x + iy)\=\(xn - x) + i(yn - y)| < \xn - x| + \yn - y|, 

then, 

|zn — z| c — + —=e whenever n > no- 

Condition thus holds. 

Conversely, if we start with condition, we know that for each positive 

number e, there exists a positive integer no such that 

\ (xn + iyn) - (x + iy)\< e whenever n > n0.  

But 

\Xn - X\<\(xn - x) + i(yn - y)|=\(xn + iyn) - (x + iy)\ 

and 

\yn - y\<\(xn - x) + i(yn - y)\=\(xn + iyn) - (x + iy)\; 

and this means that 

\xn - x\ < e and \yn - y\ < e whenever n > no. 

That is, conditions are satisfied. 

Note how the theorem enables us to write 

lim (xn + iyn)=lim xn + i lim yn 

n^^ n^^ n^^ 

whenever we know that both limits on the right exist or that the one on 

the left exists. 

EXAMPLE . The sequence z=\+i (n=1,2) 

converges to i since 
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lim ( —r + M=lim —t + i lim 1 =0 + /l=i. 

Definition can also be used to obtain this result. More precisely, for each 

positive number e, 

\zn — 1|=— < e whenever n > -r 

One must be careful when adapting our theorem to polar coordinates, as 

the following example shows. 

EXAMPLE . If, using polar coordinates, we write 

rn=\zn\ and &n=ArgZn (n=1, 2,...), 

where Arg zn denotes principal arguments (—n < & < n) of zn, we find 

that 

lim rn=lim J A + \=2 

but that 

lim &2n=n and lim &2n—i=— n (n=1, 2,...). 

Evidently, then, the limit of &n does not exist as n tends to infinity.  

 

9.4 CONVERGENCE OF SERIES 

 

An infinite series 

TO 

zn=Z1 + Z2 + …. + zn +... 

of complex numbers converges to the sum S if the sequence 

Sn=^2 zn=Z1 + Z2 + +zn (N=1, 2,...) 

of partial sums converges to S; we then write 

zn=S. 
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Note that since a sequence can have at most one limit, a series can have 

at most one sum. When a series does not converge, we say that it 

diverges. 

Theorem. Suppose that zn=xn + iyn (n=1, 2,...) and S=X + iY 

This theorem can be useful in showing that a number of familiar 

properties of series in calculus carry over to series whose terms are 

complex numbers. To illustrate how this is done, we include here two 

such properties and present them as corollaries. 

Corollary. If a series of complex numbers converges, the nth term 

converges to zero as n tends to infinity. 

Assuming that series converges, we know from the theorem that if 

Zn=Xn + iyn (n=1, 2,.. .), 

then each of the series 

OO 

xn and E yn 

n l n l  

converges. We know, moreover, from calculus that the nth term of a 

convergent series of real numbers approaches zero as n tends to infinity.  

lim zn=lim xn + i lim yn=0 + 0 * i=0; 

It follows from this corollary that the terms of convergent series are 

bounded. That is, when series converges, there exists a positive constant 

M such that |zn| < M for each positive integer n.  

For another important property of series of complex numbers that 

follows from a corresponding property in calculus series is said to be 

absolutely convergent if the series 

 XI yxl + yn (Zn=Xn + iyn) 

of real numbers y x^ + y% converges. 
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Corollary. The absolute convergence of a series of complex number's 

implies the convergence of that series. 

I < y.v-2 + yl and | yn | < yjxl + y*, we know from the comparison test in 

calculus that the two series must onverge. Moreover, since the absolute 

convergence of a series of real numbers implies the convergence of the 

series itself, it follows that the series both converge. In view of the 

theorem in this section, then, series converges.  

In establishing the fact that the sum of a series is a given number S, it is 

often convenient to define the remainder pN after N terms, using the 

partial sums : 

pn=S - sn- 

Thus S=Sn + Pn; and, since |Sn — S|=|pn — 0|, we see that a series 

converges  to a number S if and only if the sequence of remainders tends 

to zero. We shall make considerable use of this observation in our 

treatment of power series. They are series of the form 

y ]an(z — zo)n=ao + a\(z — zo) + a2(z — zo)
2
 + ..... + an(z — zo)n + ..., 

where z0 and the coefficients an are complex constants and z may be any 

point in stated region containing z0. In such series, involving a variable 

z, we shall denote sums, partial sums, and remainders by S(z), SN(z), 

and pN(z), respectively. 

It is clear from this that the remainders pN(z) tend to zero when |z| < 1 

but not when |z| > 1. Summation formula  is, therefore, established. 

limits of sequences to verify the limit of the sequence zn (n=1, 2,...)  

Let ®n (n=1, 2,...) denote the principal arguments of the numbers 

(-1)n 

Z„=2 + 1—(«=1,2 ). 

and compare  

Use the inequality ||zn| — |z|| < |zn — z| to show that 

if lim Zn=z, then lim |znl=|z|. 
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when 0 < r < 1. (Note that these formulas are also valid when r=0.) 

Show that a limit of a convergent sequence of complex numbers is 

unique by appealing to the corresponding result for a sequence of real 

numbers. 

 

9.5 TAYLOR SERIES 

We turn now to Taylor's theorem, which is one of the most important 

results. 

Theorem. Suppose that a function f is analytic throughout a disk |z — zo| 

< Ro, centered at zo and with radius Ro. Then f(z) has the power series 

representation 

f(z) =^2, an(z — Z0)n ( 0Z Z  < Ro), 

That is, series converges to f(z) when z lies in the stated open disk. 

This is the expansion of f(z) into a Taylor series about the point zo. It is 

the familiar Taylor series from calculus, adapted to functions of a 

complex variable. With the agreement that 

f(*H.zo)=f(zo) and o!=1, 

Any function which is analytic at a point zo must have a Taylor series 

about zo. For, if f is analytic at z0, it is analytic throughout some 

neighborhood 0Z Z  < £ of that point and £ may serve as the value of 

R0 in the statement of Taylor's theorem. Also, if f is entire, R0 can be 

chosen arbitrarily large; and the condition of validity becomes 0Z Z < 

rc>. The series then converges to f(z) at each point z in the finite plane. 

When it is known that f is analytic everywhere inside a circle centered at 

z0, convergence of its Taylor series about z0 to f (z) for each point z 

within that circle is ensured; no test for the convergence of the series is 

even required. In fact, according to Taylor's theorem, the series 

converges to f (z) within the circle about z0 whose radius is the distance 

from z0 to the nearest point Z1 at which f fails to be analytic. We shall 
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find that this is actually the largest circle centered at z0 such that the 

series converges to f (z) for all z interior to it. 

In the following section, we shall first prove Taylor's theorem when 

z0=0, in which case f is assumed to be analytic throughout a disk | z| < 

R0 and series becomes a Maclaurin series: 

The proof when z0 is arbitrary will follow as an immediate consequence. 

A reader who wishes to accept the proof of Taylor's theorem can easily  

PROOF OF TAYLOR'S THEOREM 

To begin the derivation of representation we write |z|= r and let C0 

denote and positively oriented circle |z|=r0, where r < r0 < R0  Since f is 

analytic inside and on the circle Q and since the point z is interior to Co, 

the Cauchy integral formula Multiplying through this equation by f(s) 

and then integrating each side with respect to s around Representation 

To verify the theorem when the disk of radius R0 is centered at an 

arbitrary point Z0, we suppose that f is analytic when 0Z Z < R0 and 

note that the composite function f(z + z0) must be analytic when \(z + z0) 

- z0\< R0. This last inequality is, of course, just \z\ < R0 ; and, if we 

write g(z)=f(z + z0), the analyticity of g in the disk |z| < R0 ensures the 

existence of a Maclaurin series representation: 

After replacing z by z - z0 in this equation and its condition of validity 

EXAMPLE . Since the function f(z)=ez is entire, it has a Maclaurin 

series representation which is valid for all z. Here f(n)(z)=ez (n=0, 1, 

2,...); 

and, because f(n)(0)=1 (n=0, 1, 2 

The entire function Z2 e3z also has a Maclaurin series expansion. The 

simplest way to obtain it is to replace z by 3z on each side of equation 

and then multiply through the resulting equation by Z2: 

 

9.6 LAURENT SERIES 
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If a function f fails to be analytic at a point z0, one cannot apply Taylor's 

theorem at that point. It is often possible, however, to find a series 

representation for f(z) involving both positive and negative powers of z 

— z0 Laurent's theorem. 

Theorem. Suppose that a function f is analytic throughout an annular 

domain R.1 < 0Z Z  < R-l , centered at z0 , and let C denote any 

positively oriented simple closed contour around z0 and lying in that 

domain. Then, at each point in the domain, f(z) has the series 

representation when n > 0,In either one of the forms, the representation 

of f(z) is called a Laurent series. 

Observe that the integrand in expression can be written f(z)(z — Z0)n 1. 

Thus it is clear that when f is actually analytic throughout the disk 

0Z Z  < R2, this integrand is too. Hence all of the coefficients bn are 

zero; and, because reduces to a Taylor series about z0. 

If, however, f fails to be analytic at z0 but is otherwise analytic in the 

disk 0Z Z  < R2, the radius R1 can be chosen arbitrarily small. 

Representation is then valid in the punctured disk 0 < 0Z Z  < R2. 

Similarly, if f is analytic at each point in the finite plane exterior to the 

circle |z — z01=R1, the condition of validity is R1 < 0Z Z  < to. Note 

that if f is analytic everywhere in the finite plane except at z0, series is 

valid at each point of analyticity, or when 0 < 0Z Z  < ^>. 

We shall prove Laurent's theorem first when z0=0, which means that the 

annulus is centered at the origin. The verification of the theorem when z0 

is arbitrary will follow readily; and, as was the case with Taylor's 

theorem, a reader can skip the entire proof without difficulty. 

 

PROOF OF LAURENT'S THEOREM 

We start the proof by forming a closed annula r region ry < |z| < r2 that is 

contained in the domain R1 < |z| < R2 and whose interior contains both 
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the point z and the contour C We let C1 and C2 denote the circles |z|=n 

and |z| =r2, 

respectively, and we assign them a positive orientation. Observe that f is 

analytic on Ci and C2, as well as in the annular domain between them. 

Next, we construct a positively oriented circle y with center at z and 

small enough to be contained in the interior of the annular region ri < |z| 

< ri, It then follows from the adaptation of the Cauchy-Goursat theorem 

to integrals of analytic functions around oriented boundaries of multiply 

connected domains that according to the Cauchy integral formula, the 

value of the third integral here is 2nif(z). Hence 

Now the factor 1/(s — z) in the first of these integrals is the same as in 

expression, where Taylor's theorem was proved; and we shall need here 

the expansion which was used in that earlier section. As for the factor 

1/(z — s) in the second integral, an interchange of s and z in equation 

reveals. 

If we replace the index of summation n here by n — 1, this expansion 

takes the form which is to be used in what follows. 

by f(s)/(2ni) and then integrating each side of the resulting equations 

with respect to s around C2 and C1, respectively, we find from 

expression that 

where the numbers an (n=0, 1, 2,..., N — 1) and bn (n=1, 2,...,N) are 

given by the equations f(s) ds 

As N tends to <xi, expression evidently takes the proper form of a 

Laurent series in the domain R1 < |z| < R2, provided that 

lim pN(z)=0 and lim oN(z)=0. 

These limits are readily established by a method already used in the 

proof of Taylor's. We write |z|=r, so that r1 < r < ri, and let M denote the 

maximum value of |f (s)| on C1 and C2. We also note that if s is a point 

on C2, then |s — z| > r2 — r ; and if s is on C1, we have |z — s| > r — ru  

Since (r/r2) < 1 and (r1/r) < 1, it is now clear that both pN(z) and aN(z) 

tend to zero as N tends to infinity. 
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Finally the contours used in integrals here may be replaced by the 

contour C. This completes the proof of Laurent's theorem when zo=0 

since, if z is used instead of s as the variable of integration, expressions 

for the coefficients an and bn are the same when z0=0 there. 

To extend the proof to the general case in which z0 is an arbitrary point 

in the finite plane, we let f be a function satisfying the conditions in the 

theorem; and, just as we did in the proof of Taylor's theorem, we write 

g(z)=f(z + z0). Since f(z) is analytic in the annulus R1 < 0Z Z  < R2, 

the function f(z + z0) is analytic when R1 <  0 0Z Z Z   < R2. That 

is, g is analytic in the annulus R1 < |z| < R2, which is centered at the 

origin. Now the simple closed contour C in the statement of the theorem 

has some parametric representation z=z(t) (a < t < b), where 

 1   —  0  2R U t z R   

for all t in the interval a < t < b. Hence if Y denotes the path 

z=z(t) — z0 (a < t < b), 

T is not only a simple closed contour but, in view of inequalities it lies in 

the domain R1 < jzj < R2. Consequently, g(z) has a Laurent series 

representation 

 Representation is obtained if we write f(z + z0) instead of g(z) in 

equation and then replace z by z — z0 in the resulting equation, as well 

as in the condition of validity R1 < j zj < R2. Expression for the 

coefficients an is moreover, the same as expression, since 

f(z) dz 

Similarly, the coefficients bn in expression are the same as those in 

expression. 

EXAMPLE . The function f(z)=1/(z — i)2 is already in the form of a 

Laurent series, where z0=i. That is all of the other coefficients are zero.  

for the coefficients in a Laurent series, we know that 

in=0. ±1. ±2 , 
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where C is, for instance, any positively oriented circle |z — i |=R about 

the point z0=i.  

f(z) = (z — 1)(z — 2) z — 1 z — 2 which has the two singular points 

z=1 and z=2, is analytic in the domains 

|z| < 1, 1 < |z| < 2, and 2 < |z| < o. 

In each of those domains, denoted by D1, D2, and D3, respectively f(z) 

has series representations in powers of z. They can all be found by 

making the appropriate replacements for z in the expansion 

EXAMPLE . The representation in Di is a Maclaurin series. To find it, 

we observe that |z| < 1 and |z/2| < 1 when z is in D1 

The representations in D2 and D3 are treated in the next two examples. 

EXAMPLE . Because 1 < |z| < 2 when z is a point in D2, we know that 

|1/z| < 1 and |z/2| < 1 for such points. This suggests writing expression as 

If we replace the index of summation n in the first of these series by n — 

1 and then interchange the two series, we arrive at an expansion having 

the same form as the one in the statement of Laurent's theorem Since 

there is only one Laurent series for f(z) in the annulus D2, expansion is, 

in fact, the Laurent series for f(z) there. 

EXAMPLE . The representation of the function in the unbounded 

domain D3, where 2 < |z| < 0, is also a Laurent series. Since |2/z| < 1 

when z is in D3, it is also true that |1/z| < 1 used in Laurent's theorem in 

that theorem. 

EXERCISES 

Find the Laurent series that represents the function 

f(z) =z2 sinf in the domain 0 < |z| < 0. 

Find a representation for the function 

fiz)=1 1 1 
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1 + z z 1 + (1/z) in negative powers of z that is valid when 1 < |z| < w. 

and specify the regions in which those expansions are valid. 

Let a denote a real number, where -1 < a < 1, and derive the Laurent 

series representation. 

After writing z=e1 in the equation obtained in part, equate real parts and 

then imaginary parts on each side of the result to derive the summation 

formulas converges to an analytic function X(z) in some annulus R1 < |z| 

< R2. That sum X(z) is called the z-transform of x[n] (n=0, ±1, ±2,.. .). 

for the coefficients in a Laurent series to show that if the annulus 

contains the unit circle |z|=1, then the inverse z-transform of X(z)  

Let f(z) denote a function which is analytic in some annular domain 

about the origin that includes the unit circle z=e'^ (—n < <p < n). By 

taking that circle as the path of integration in expressions coefficients an 

and bn in a Laurent series in powers of z, show that 

1 Cn 1 Cn 

when z is any point in the annular domain. 

Write u(0)=Re[f(e'θ)] and show how it follows from the expansion  This 

is one form of the Fourier series expansion of the real-valued function 

u(0) on the interval — n < θ < n. The restriction on u(θ) is more severe 

than is necessary in order for it to be represented by a Fourier series. 

 

9.7 ABSOLUTE AND UNIFORM 

CONVERGENCE OF POWER SERIES 

 

This section and the three following it are devoted mainly to various 

properties of power series. A reader who wishes to simply accept the 

theorems and the corollary in these sections can easily skip the proofs in 

order to reach Sec. 67 more quickly. 
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We recall from a series of complex numbers converges absolutely if the 

series of absolute values of those numbers converges. The following 

theorem concerns the absolute convergence of power series. 

Theorem . If a power series 

an(z — Z0)n 

n= 0 

converges when z=Z1 (zt=Z0), then it is absolutely convergent at each 

point z in the open disk |z — zo| < R1 where R1=|Z1 — zo|  

y 

We start the proof by assuming that the series 

^ an(Z1 — zo)n (Z1=zo) 

converges. The terms an(Z1 — zo)n are thus bounded; that is, 

|an(Z1 — zo)
n
\<M (n=0, 1, 2,...) for some positive constant M. If |z — zo| 

< Ri and if we write 

|z — zo| 

|Z1 — zo| 

we can see that 

Ia„(z - zo)"I=\a„(Z1 - zo)"l (….)
n
 < Mp" (n=0, 1, 2,...). 

Now the series 

J^Mp" 

is a geometric series, which converges since p < i. Hence, by the 

comparison test for series of real numbers, 

^an^ — zo )n| 

converges in the open disk |z — zo| < Ri. This completes the proof. 

The theorem tells us that the set of all points inside some circle centered 

at zo is a region of convergence for the power series (i), provided it 
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converges at some point other than zo. The greatest circle centered at zo 

such that series (i) converges at each point inside is called the circle of 

convergence of series (i). The series cannot converge at any point Z2 

outside that circle, according to the theorem ; for if it did, it would 

converge everywhere inside the circle centered at zo and passing through 

Z2. The first circle could not, then, be the circle of convergence. 

Our next theorem involves terminology that we must first define. 

Suppose that the power series has circle of convergence |z — zo I=R, and 

let S(z) and SN(z) represent the sum and partial sums, respectively, of 

that series: 

S(z)=^2an(z — zo)
n
, Sn(z)=^2 an(z — zo)

n
 (|z — zo| < R). 

Then write the remainder function 

PN(z)=S(z) — Sn(z) (|z — zo| < R). 

Since the power series converges for any fixed value of z when \z — zo | 

< R, we know that the remainder pN(z) approaches zero for any such z as 

N tends to infinity. According to definition of the limit of a sequence, 

this means that corresponding to each positive number e, there is a 

positive integer Ne such that 

\pn(z)\ < e whenever N > Ne. 

When the choice of Ne depends only on the value of e and is independent 

of the point z taken in a specified region within the circle of 

convergence, the convergence is said to be uniform in that region. 

Theorem. If Z1 is a point inside the circle of convergence \z — z0 \=R of 

a power series then that series must be uniformly convergent in the 

closed disk\z — zo\< Ri, where 

Ri=\Z1 — zo\ 

Our proof of this theorem depends on theorem. Given that Z1 is a point 

lying inside the circle of convergence of series, we note that there are 

points inside that circle and farther from z0 than Z1 for which the series 

converges. So, according to converges. Letting m and N denote positive 

integers. 
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Since on are the remainders of a convergent series, they tend to zero as N 

tends to infinity. That is, for each positive number e, an integer Ns exists 

such that 

on < e whenever N > Ne 

Because of conditions, then, condition holds for all points z in the disk \z 

- Z0\< R1; and the value of Ne is independent of the choice of z. Hence 

the convergence of series is uniform in that disk. 

9.8 CONTINUITY OF SUMS OF POWER 

1SERIES 

 

Our next theorem is an important consequence of uniform convergence, 

discussed in the previous section. 

Theorem. A power series ^2an(z - Z0)
n
 

represents a continuous function S(z) at each point inside its circle of 

convergence \z - Z0 \=R 

Another way to state this theorem is to say that if S(z) denotes the sum of 

series within its circle of convergence 0Z Z =R and if Z1 is a point 

inside that circle, then for each positive number e there is a positive 

number S such that 

\S(z) - S(z 1)\ < e whenever \z - Z1\< S. 

To prove the theorem, we let Sn(z) denote the sum of the first N terms of 

series and write the remainder function 

Pn(z)=S(z) — SN(z) ( 0Z Z  < R) 

Then, because 

S(z)=Sn(z) + pn(z) ( 0Z Z  < R), 

one can see that 

\S(z) — S(Z1 )\=\Sn(z) — Sn(Z1 ) + pn(z) — pn(Z1)\, 
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or 

\S(z) — S(Z1)\ < \Sn(z) — Sn(Z1)\ + \pn(z)\ + \pn(Z1)\. 

If z is any point lying in some closed disk \z — z01 < R0 whose radius 

R0 is greater than |Z1 — z0 | but less than the radius R of the circle of 

convergence of series the uniform convergence stated ensures that there 

is a positive integer Ns such that 

\pn(z)\ < - whenever N > Ns. 

In particular, condition holds for each point z in some neighborhood \z 

— Z1\< S of Z1 that is small enough to be contained in the disk \z — z01 

< R0. 

Now the partial sum SN(z) is a polynomial and is, therefore, continuous 

at Z1 for each value of N. In particular, when N=Ns + 1, we can choose 

our S so small that 

|SN(z) -SN(Z1)\ < - whenever \z - Z1\ < 5. 

By writing N=Ns + 1 in inequality and using the fact that statements and 

are true when N=Ns + 1, we now find that 

|5(z) - S(Z1)\ < - + - + - whenever |z — Z1| < 5. 

This is statement, and the theorem is now established. 

By writing w=1/(z — Z0), one can modify the two theorems in the 

previous section and the theorem here so as to apply to series of the type 

If, for instance, series converges at a point Z1 (Z1=Z0), the series 

ybn 

n=1 

must converge absolutely to a continuous function when 

Thus, since inequality is the same as 0Z Z  > 1 0Z Z , series must 

converge absolutely to a continuous function in the domain exterior to 
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the circle 0Z Z =^1, where R1= 0Z Z . Also, we know that if a 

Laurent series representation 

is valid in an annulus R1 < 0Z Z  < R2, then both of the series on the 

right converge uniformly in any closed annulus which is concentric to 

and interior to that region of validity. 

9.9 INTEGRATION AND 

DIFFERENTIATION OF POWER SERIES 

 

We have just seen that a power series 

S(z) =y an(z — Z0)n 

represents a continuous function at each point interior to its circle of 

convergence. In this section, we prove that the sum S(z) is actually 

analytic within that circle. Our proof depends on the following theorem, 

which is of interest in itself. 

Theorem. Let C denote any contour interior to the circle of convergence 

of the power series, and let g(z) be any function that is continuous on C. 

The series formed by multiplying each term of the power series by g(z) 

can be integrated term by term over C; that is, 

f g(z)S(z) dz= n f g(z)(z - zo)
n
 dz. 

To prove this theorem, we note that since both g(z) and the sum S(z) of 

the power series are continuous on C, the integral over C of the product 

g(z)S(z)=^2 ang(z)(z - z0)n + g(z)pN(z), 

where pN(z) is the remainder of the given series after N terms, exists. 

The terms of the finite sum here are also continuous on the contour C, 

and so their integrals over C exist. Consequently, the integral of the 

quantity g(z)pN(z) must exist; and we may write 

[g(z)S(z) dz=Y] an f g(z)(z - z0)n dz + f g(z)pN(z) dz. 



Notes 

49 

Now let M be the maximum value of |g(z) | on C, and let L denote the 

length of C. In view of the uniform convergence of the given power 

series  know that for each positive number e there exists a positive 

integer Ne such that, for all points z on C, 

|pN(z)| < e whenever N > Ne. 

Since Ne is independent of z, we find that 

< MeL whenever N >  

that is, 

lim/g(z)PN(z) dz=0. 

It follows, therefore, from equation that 

g(z)S(z) dz=lim an I g(z)(z - z0)n dz. 

/ g(z)S(z) dz=lim Y] an  

This is the same as equation.If g(z)=1 for each value of z in the open disk 

bounded by the circle of convergence of power series, the fact that (z — 

Z0)n is entire when n=0, 1, 2,... ensures that 

f g(z)(z — Z0)n dz=f (z — Z0)n dz=0 (n=0, 1, 2,...) 

for every closed contour C lying in that domain. According to equation 

then, 

S(z) dz=0 

for every such contour; and, by Morera's theorem the function S(z) is 

analytic throughout the domain. We state this result as a corollary. 

Corollary. The sum S(z) of power series is analytic at each point z 

interior to the circle of convergence of that series. 

This corollary is often helpful in establishing the analyticity of functions 

and in evaluating limits. 

EXAMPLE . To illustrate, let us show that the function defined by means 

of the equations 
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f( ) _ j(ez — 1)/z when z=0, when z=0 

is entire. Since the Maclaurin series expansion 

represents ez — 1 for every value of z, the representation 

obtained by dividing each side of equation by z, is valid when z=0. But 

series clearly converges to f(0) when z=0. Hence representation is valid 

for all z; and f is, therefore, an entire function. Note that since (ez — 

1)/z=f(z) when z=0 and since f is continuous at z=0, 

The first limit here is, of course, also evident if we write it in the form 

(ez — I) — 0 

z — 0 

which is the definition of the derivative of ez — 1 at z=0. 

that the Taylor series for a function f about a point Z0 converges to f(z) 

at each point z interior to the circle centered at Z0 and passing through 

the nearest point Z1 where f fails to be analytic. In view of our corollary 

we now know that there is no larger circle about z0 such that at each 

point z interior to it the Taylor series converges to f(z). For if there were 

such a circle, f would be analytic at Z1; but f is not analytic at Z1. 

Theorem. The power series can be differentiated term by term. That is, at 

each point z interior to the circle of convergence of that series, 

S '(z)=^ nan(z — z0)n 1 

To prove this, let z denote any point interior to the circle of convergence 

of series. Then let C be some positively oriented simple closed contour 

surrounding z and interior to that circle 

2ni (s — z)
2
 

at each point s on C. Since g(s) is continuous on C, Theorem tells us that 

f g(s)S(s) ds=an f g(s)(s — z0)
n
 ds. 

Now S(z) is analytic inside and on C, and this enables us to write 

f1 f S(s) ds . 
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with the aid of the integral representation for derivatives.  

 

9.10 UNIQUENESS OF SERIES 

REPRESENTATIONS 

 

The uniqueness of Taylor and Laurent series representations, anticipated  

respectively, follows readily from. We consider first the uniqueness of 

Taylor series representations. 

Theorem . If a series 

^2an(z - Z0)n 

converges to f(z) at all points interior to some circle Z —  0Z R , then 

it is the Taylor series expansion for f in powers of z — Z0 • 

To start the proof, we write the series representation 

f(z)=Y^ o-n(z — z0)n ( Z —  0Z  < R) 

in the hypothesis of the theorem using the index of summation m: 

f(z)=^ Om(z — z0)m Z —  0Z   (< R). 

Then, by appealing we may write 

f g(z)f(z) dz=V am f g(z)(z — z0)m dz, 

where g(z) is any one of the functions 

and C is some circle centered at zo and with radius less than R. 

In view of the extension of the Cauchy integral formula we find that 

f(z) dz f (zo) 

and, since  

[ , w \m j 1 [ dz when m=n, 
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it is clear that 

^2 am J g(z)(z - Z0)m dz=an. 

Because of equations equation now reduces to 

f(n)(z0) 

This shows that series is, in fact, the Taylor series for f about the point 

z0. 

Note how it follows from that if series converges to zero through- out 

some neighborhood of z0, then the coefficients an must all be zero. 

Our second theorem here concerns the uniqueness of Laurent series 

representations. 

Theorem. If a series 

^ (z - Zo)n 

converges to f(z) at all points in some annular domain about z0, then it is 

the Laurent series expansion for f in powers of z — z0 for that domain. 

The method of proof here is similar to the one used in proving Theorem. 

The hypothesis of this theorem tells us that there is an annular domain 

about z0 such that 

f(z)=Cn(z — z0)n for each point z in it. Let g(z) be as defined by 

equation, but now allow n to be a negative integer too. Also, let C be any 

circle around the annulus, centered at Z0 and taken in the positive sense. 

Then, using the index of summation m and adapting to series involving 

both nonnegative and negative powers of z — Z0, write 

f g(z)f(z)dz=V Cm ( g(z)(z — Z0)m dz, y~~~r f /U dJ+l=Cm f 8{z){z - 

zof dz. 

2*lJc(z — z0)n + 1 m=-«, JC 

Since equations are also valid when the integers m and n are allowed to 

be negative, equation reduces to 

flZUlZ ,.=0. ±1. ±2....). 
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2nl Jc (z — z0)n+1 

which is expression for coefficients in the Laurent series for f in the 

annulus. 

 

9.11 MULTIPLICATION AND DIVISION 

OF POWER SERIES 

 

Suppose that each of the power series 

^Zan(z - z0)
n
 and ^bn(z — z0)

n
 

converges within some circle Z —  0Z R . Their sums f(z) and g(z), 

respectively, product of those sums has a Taylor series expansion which 

is valid there: 

f(z)g(z)=Y^cn(z — z0)n ( Z —  0Z < R). 

C0=f(z0)g(z0)=a0 b0, 

f(zo)g'izo) + f'(zo)g(zo) u ^c i =…..=a0bi + aibo, 

and 

f(zo)g"(zo) + 2f'(zo)g'(zo) + f"(zo)g(zo)cz = — = aobz + ci\b\ + azb. 

The general expression for any coefficient cn is easily obtained by 

referring to Leibniz's rule 

[f(z)g(z)]
(n)

=C!)f(k)(z)g(n—k)(z) (n=1, 2,...), 

where 

/«\= _n.  (jt=0,1,2 n), 

for the nth derivative of the product of two differentiable functions. As 

usual, f(0)(z)=f(z) and 0!=1. Evidently, 

and so expansion can be written 
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f(z)g(z)=a0b0 + (a0b1 + a1b0)(z - Z0)+ (a0b2 + a1b1 + aib0)(z - z0) +

  

+ ( y ] 
a
k

b
n-k\ (z — z0)

n
 +'•• ( Z —  0Z < R) 

Series is the same as the series obtained by formally multiplying the two 

series term by term and collecting the resulting terms in like powers of z 

— z0 ; it is called the Cauchy product of the two given series. 

EXAMPLE . The function e
z
/(1 + z) has a singular point at z=—1, and so 

its Maclaurin series representation is valid in the open disk |z| < 1. The 

first three nonzero terms are easily found by writing 

e=e11- \ = (l+z + lrZ2 + l:Z3 -1 V1 ~ ^ + ::2 ~  ) 

1 + z 1 - (-z) \ 2 6 

and multiplying these two series term by term. To be precise, we may 

multiply each term in the first series, then each term in that series by -z, 

etc. The following systematic approach is suggested, where like powers 

of z are assembled vertically so that their coefficients can be readily 

added: 

1 + z + -Z + + .....—z — z — -z — -z — ….. 

Z^3 + Z’^4 + -U5 + ---— z — z — -z — -z — •• • 

The desired result is 

ez/1+z 

y—=1 + ~Z2 -~Z3 + ... (|Z| < 1 ) 

Continuing to let f ( z )  and g ( z )  denote the sums of series suppose 

that g(z) = 0 when Z —  0Z < R. Since the quotient f(z)/g(z) is analytic 

throughout the disk Z —  0Z  < R, it has a Taylor series representation 

= ^dn(z-zo)" (\z-zo\<R)- 

where the coefficients d n  can be found by differentiating f ( z ) / g ( z )  

successively and evaluating the derivatives at z = z0. The results are the 
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same as those found by formally carrying out the division of the first of 

series by the second. Since it is usually only the first few terms that are 

needed in practice, this method is not difficult. 

EXAMPLE. As pointed out the zeros of the entire function sinhz 

are the numbers z = nni (n = 0, ±1, ±2,...). So the quotient 

z
2
sinh z Z2(z + z

3
/3! + z

5
/5! + --- ')' 

which can be written 

 

z
2
sinhz z

3
 \1 + Z2/3! + z

4
/5! +  

has a Laurent series representation in the punctured disk 0 < |z| < n. The 

denominator of the fraction in parentheses on the right-hand side of 

equation is a power series that converges to (sinh z)/z when z = 0 and to 

1 when z = 0. Thus the sum of that series is not zero anywhere in the 

disk |z| < n; 
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Discuss Integration And Differentiation Of Power Series 
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9.12 LET US SUM UP 
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In this unit we have discussed the definition and example of Series, 

Convergence Of Sequence, Convergence Of Series, Taylor Series, 

Laurent Series, Absolute And Uniform Convergence Of Power Series, 

Continuity Of Sums Of Power Series, Integration And Differentiation Of 

Power Series, Uniqueness Of Series Representations, Multiplication And 

Division Of Power Series 

9.13 KEYWORDS 

Series  This chapter is devoted mainly to series representations of 

analytic functions Convergence Of Sequence  An infinite sequence Z1 

,Z2,---,Zn,... 

Convergence Of Series  An infinite series TO zn=Z1 + Z2 + ..... + zn +... 

Taylor Series The proof when z0 is arbitrary will follow as an immediate 

consequence 

Laurent Series  If a function f fails to be analytic at a point z0, one cannot 

apply Taylor's theorem at that point. 

Absolute And Uniform Convergence Of Power Series  This section and 

the three following it are devoted mainly to various properties of power 

series 

Continuity Of Sums Of Power Series Our theorem is an important 

consequence of uniform convergence, discussed in the previous section. 

Integration And Differentiation Of Power Series  We have just seen that 

a power series O S(z) =y an(z — Z0)n 

Uniqueness Of Series Representations  The uniqueness of Taylor and 

Laurent series representations, anticipated  respectively, follows readily 

from. We consider first the uniqueness of Taylor series representations. 

Multiplication And Division Of Power Series  Suppose that each of the 

power series ^Zan(z - z0)n and ^bn(z — z0)n 
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9.14 QUESTIONS FOR REVIEW 

Explain Series  

Explain Integration And Differentiation Of Power Series 

 

9.15 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Series     (answer for Check your Progress-1 Q) 

 

Integration And Differentiation Of Power Series 

     (answer for Check your Progress-1 

Q) 
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UNIT-10 : RESIDUES AND POLES 

 

STRUCTURE 

10.0 Objectives 

10.1 Introduction 

10.2 Residues And Poles 

10.3 Isolated Singular Points  

10.4 Residues  

10.5 Cauchy's Residue Theorem 

10.6 Residue At Infinity 

10.7 Residues At Poles 

10.8 Zeros Of Analytic Functions 

10.9 Zeros And Poles 

10.10 Let Us Sum Up   

10.11 Keywords   

10.12 Questions For Review   

10.13 Answers To Check Your Progress 

10.14 References  

10.0 OBJECTIVES 

After studying this unit, you should be able to: 

 

Learn, Understand about Residues And Poles 

Isolated Singular Points  

Residue  
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Cauchy's Residue Theorem 

Residue At Infinity 

Residues At Poles 

Zeros Of Analytic Functions 

Zeros And Poles 

10.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis .  

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Residues And Poles, Isolated Singular Points, Residue, Cauchy's Residue 

Theorem, Residue At Infinity, Residues At Poles, Zeros Of Analytic 

Functions, Zeros And Poles 

  10.2 RESIDUES AND POLES 

The Cauchy-Goursat theorem states that if a function is analytic at all 

points interior to and on a simple closed contour C, then the value of the 

integral of the function around that contour is zero. If, however, the 

function fails to be analytic at a finite number of points interior to C, 

there is, as we shall see in this chapter, a specific number, called a 

residue, which each of those points contributes to the value of the 

integral. We develop here the theory of residues. we shall illustrate their 

use in certain areas of applied mathematics. 

10.3 ISOLATED SINGULAR POINTS 

Recall that a point Z0 is called a singular point of a function f if f fails to 

be analytic at Z0 but is analytic at some point in every neighborhood of 

Z0. A singular point Z0 is said to be isolated if, in addition, there is a 

deleted neighborhood 0 < |z — Z01 < e of Z0 throughout which f is 

analytic. 

EXAMPLE. The function 

file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19
file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19


Notes 

60 

z + 1 z3(Z2 + 1) 

has the three isolated singular points z=0 and z=±i. 

EXAMPLE . The origin is a singular point of the principal branch  

Logz = ln r +  iθ (r > 0, — n < θ < n) 

of the logarithmic function. It is not, however, an isolated singular point 

since every deleted e neighborhood of it contains points on the negative 

real axis and the branch is not even defined there. Similar remarks can be 

made regarding any branch 

logz=ln r + id (r > 0, a < θ < a + 2n) of the logarithmic function. 

 EXAMPLE . The function 

sin(n/z) 

has the singular points z=0 and z=1/n (n=±1, ±2,...), all lying on the 

segment of the real axis from z=— 1 to z=1. Each singular point except 

z=0 is isolated. The singular point z=0 is not isolated because every 

deleted e neighborhood of the origin contains other singular points of the 

function. More precisely, when a positive number e is specified and m is 

any positive integer such that m > 1/e, the fact that 0 < 1/m < e means 

that the point z=1/m lies in the deleted e neighborhood 0 < |z| < e   

In this chapter, it will be important to keep in mind that if a function is 

analytic everywhere inside a simple closed contour C except for a finite 

number of singular points 

Z1, Z2, • • • , 

those points must all be isolated and the deleted neighborhoods about 

them can be made small enough to lie entirely inside C. To see that this 

is so, consider any one of the points zk. The radius e of the needed 

deleted neighborhood can be any positive number that is smaller than the 

distances to the other singular points and also smaller than the distance 

from zk to the closest point on C. 

Finally, we mention that it is sometimes convenient to consider the point 

at infinity as an isolated singular point. To be specific, if there is a 
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positive number R1 such that f is analytic for R1 < |z| < *x>, then f is 

said to have an isolated singular point at Z0 =*x>. Such a singular point 

will be use 

10.4 RESIDUES 

When Z0 is an isolated singular point of a function f, there is a positive 

number R2 such that f is analytic at each point z for which 0 < |z — Z0I 

< R2. Consequently, f (z) has a Laurent series representation 

f (Z)=an(z ~ ^0 )" H 1" " "2 +  

z — z0 (z — z0)
2
 (z — zo)

n
 

(0 < |z — zq| < R2), 

where the coefficients an and bn have certain integral representations 

(Sec. 60). In particular, 

* " f(z) dz 2ni Jc (z-z0)~
"+1

 

where C is any positively oriented simple closed contour around z0 that 

lies in the punctured disk 0 < |z — zo| < R2. When n=1, this xpression 

for bn becomes 

f f(z)dz=2nib1. 

The complex number b1, which is the coefficient of 1/(z — zo) in 

expansion is called the residue of f at the isolated singular point zo, and 

we shall often write 

b1=Res f(z). 

z=zo 

Equation then becomes 

f f(z) dz=2ni Res f(z). 

as z=zo 

Sometimes we simply use B to denote the residue when the function f 

and the point Z0 are clearly indicated. 
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Equation provides a powerful method for evaluating certain integrals 

around simple closed contours. 

EXAMPLE . Consider the integral 

J Z1 sin^^ dz 

where C is the positively oriented unit circle |z|=1. Since the integrand is 

analytic everywhere in the finite plane except at z=0, it has a Laurent 

series representation that is valid when 0 < |z| < rc>. Thus, according to 

equation the value of integral is 2ni times the residue of its integrand at 

z=0. 

To determine that residue, we recall the Maclaurin series representation 

z3 z5 z 

smz =z- — + — - — + ... (|z| < 00) 

and use it to write 

 

:2s"lUJ=;-3!T + j!'?-7i'?+" 

The coefficient of 1/z here is the desired residue. Consequently, 

;2sin( dz=2ni 

 

EXAMPLE. Let us show that j exp^zL^ dz=0 

when C is the same oriented circle |z|=1 as in Example. Since 1/Z2 is 

analytic everywhere except at the origin, the same is true of the 

integrand. The isolated singular point z=0 is interior to C, and can be 

used here as well. With the aid of the Maclaurin series representation 

^=l + l! + 2! + 3!+'" (Iz| < 00), one can write the Laurent series expansion 

exp(?)=1 + n'? + r? + r? + -' 10 

The residue of the integrand at its isolated singular point z=0 is, 

therefore, zero (b1=0), and the value of integral is established. 
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We are reminded in this example that although the analyticity of a 

function within and on a simple closed contour C is a sufficient condition 

for the value of the integral around C to be zero, it is not a necessary 

condition. 

EXAMPLE . A residue can also be used to evaluate the integral 

c z(z - 2)
4
  

where C is the positively oriented circle |z — 2|=1. Since the integrand is 

analytic everywhere in the finite plane except at the points z=0 and z=2, 

it has a Laurent series representation that is valid in the punctured disk 0 

< |z - 2|  

2ni times the residue of its integrand at z=2. To determine that residue, 

we recall the Maclaurin series expansion 

= £>" (LI < l) 

and use it to write 

z(z - 2)
4
 (z - 2)

4
 2 + (z - 2) 2(z — 2)

4
 1_(_z^2 

^ ( 1)« 

= EWr(;"2)""4 (0 < 2z  < 2). 

In this Laurent series, which could be written in the form, the coefficient 

of 1/(z - 2) is the desired residue, namely -1/16. Consequently, 

C z(z - 2)
4
 V 16/ 8 

10.5 CAUCHY'S RESIDUE THEOREM 

 

If, except for a finite number of singular points, a function f is analytic 

inside a simple closed contour C, those singular points must be isolated 

The following theorem, which is known as Cauchy's residue theorem, is 

a precise statement of the fact that if f is also analytic on C and if C is 

positively oriented, then the Cauchy's Residue Theorem  
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value of the integral of f around C is 2ni times the sum of the residues of 

f at the singular points inside C. Let the points zk (k=1, 2,... ,n) be centers 

of positively oriented circles Ck which are interior to C and are so small 

that no two of them have points in common. The circles Ck, together 

with the simple closed contour C, form the boundary of a closed region  

throughout which f is analytic and whose interior is a multiply connected 

domain consisting of the points inside C and exterior to each Ck. Hence, 

according to the adaptation of the Cauchy-Goursat theorem to such 

domains  

 

f  f ( z )dz  =  2n i  Res f (z )  ( k  =  1 ,  2 , . . . , n ) ,  

where C is the circle |z|=2, described counterclockwise. The integrand 

has the two isolated singularities z=0 and z=1, both of which are interior 

to C. We can find the residues B\ at z=0 and B2 at z=1 with the aid of the 

Maclaurin series 

= 1 + z + Z2 +  (|z| < 1). 

We observe first that when 0 < |z| < 1 (Fig. 88), 

5z — 2 5z — 2 —1 2\, „ 2 

= 5 (-1 - z - z ); 

z(z — 1) z 1 — z\z 

and, by identifying the coefficient of 1/z in the product on the right here, 

we find that B1=2. Also, since 

5z — 2 5(z — 1) + 3 1 

z(z — 1) z — 1 1 + (z — 1) 

= (5 + -^j[l-(z-l) + (z-l)
2
 

when 0 < |z — 1| < 1, it is clear that B2=3. Thus 

5z — 2 

dz=2ni(B1 + B2)=10ni. 
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C z(z — 1) 

In this example, it is actually simpler to write the integrand as the sum of 

its partial fractions: 

z(z - 1) z + z - 1'  

Then, since 2/z is already a Laurent series when 0 < |z| < 1 and since 3/(z 

— 1) is a Laurent series when 0 < |z — 1| < 1, it follows that 

C 5Z — 2 

dz=2ni(2) + 2ni(2)=lOni. 

 

10.6 RESIDUE AT INFINITY 

Suppose that a function f is analytic throughout the finite plane except 

for a finite number of singular points interior to a positively oriented 

simple closed contour c . Next, let R1 denote a positive number which is 

large enough that C lies inside the circle |z|=R1. The function f is 

evidently analytic throughout the domain R1 < |z| < and, as already 

mentioned at the end of the point at infinity is then said to be an isolated 

singular point of f. 

Now let C0 denote a circle |z|=R0, oriented in the clockwise direction, 

where R0 > R1. The residue of f at infinity is defined by means of the 

equation 

f (z) dz=2ni Res f(z). 

z=to 

Note that the circle C0 keeps the point at infinity on the left, just as the 

singular point in the finite plane is on the left in equation. Since f is 

analytic throughout the closed region bounded by C and C0, the principle 

of deformation 

[ f(z)dz=(  f(z)dz=—[ f (z) dz. 

So, in view of definition 
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To find this residue, write the Laurent series  

f(z)=CnZU (R < |Z| < rc), 

where 

c,=d-f («=0, ±1, ±2 ). 

Replacing z by 1/z in expansion and then multiplying through the result 

by 1/Z2 we see that 

n=—rc n=—rc x 

and 

Putting n=—1 in expression we now have 

or 

I f(z) dz=—2ni Res  

Note how it follows from this and definition that 

With equations, the following theorem is now established. This theorem 

is sometimes more efficient to use than Cauchy's residue theorem since it 

involves only one residue. 

Theorem. If a function f is analytic everywhere in thefinite plane except 

for a finite number of singular points interior to a positively oriented 

simple closed contour C 

EXAMPLE. Evaluated the integral of 

f(z) =5z – 2 / z(z - 1) 

around the circle |z| =2, described counterclockwise, by finding the 

residues of f(z) at z=0 and z=1. Since 

-f(-) - 5 ~2z 5~2z 1 

Z2 |z|  z(1 - z) z 1 - z = - 2^)(1 + z + Z2 H ) 

= - + 3 + 3z + --- (0 < |z| < 1). 

we see that the theorem here can also be used, where the desired residue 

is 5. More precisely, 
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5z - 2 

dz=27TZ'(5)=107T*',  C z(z - 1) 

where C is the circle in question. This is, of course, the result obtained  

EXAMPLE . Observe that the function 

Z2 - 2z + 3 z(z - 2) + 3/(z-2)  

= z H 3/(z-2) 

2 + (z - 2) +3/(z-2) 

(0 < \z - 2\ < to) 

has a simple pole (m=1) at z0=2. Its residue b1 there is 3. 

When representation is written in the form  

f(z)=^ Cn(z - z0)
n
 (0 < \z - z0\< R2), 

the residue of f at z0 is, of course, the coefficient c-1. 

EXAMPLE . The function 

sinh z 1/z3 z5 z7\111 z z3~=?^+3! + 5! + 7!+"7=? + 3!'Z + 5! + 7!+"'    

(0 < \z\ < to) 

has a pole of order m=3 at z0=0, with residue B=1/6. 

There remain two extremes, the case in which every coefficient in the 

principal is zero and the one in which an infinie number of them are 

nonzero. When every bn is zero, so that 

f(z)=^an(z - Z0)
n
=a.0 + a\(z - Z0) + a2(z - Z0)

2
 +    (0 < Z —  0Z  < 

R2), 

z0 is known as a removable singular point. Note that the residue at a 

removable singular point is always zero. If we define, or possibly 

redefine, f at z0 so that f(z0)=a0, expansion becomes valid throughout 

the entire disk Z —  0Z  < R2.  
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Since a power series always represents an analytic function interior to its 

circle of convergence, it follows that f is analytic at z0 when it is 

assigned the value a0 there. The singularity z0 is, therefore, removed. 

EXAMPLE 5. We recall from (0 < |z| < m). 

From this we see that e1/z has an essential singular point at z0=0, where 

the residue b1 is unity. 

This example can be used to illustrate an important result known as 

Picard's theorem. It concerns the behavior of a function near an essential 

singular point and states that in each neighborhood of an essential 

singular point, a function assumes everyfinite value, with one possible 

exception, an infinite number of times.In the remaining sections of this 

chapter, we shall develop in greater depth the theory of the three types of 

isolated singular points just described. The emphasis will be on useful 

and efficient methods for identifying poles and finding the corresponding 

residues. 

Exercise : 

In each case, write the principal part of the function at its isolated 

singular point and determine whether that point is a pole, a removable 

singular point, or an essential singular point: 

MzcJ
3
-): W=-: (0^\z/ 1 + z z z  (2 - z)

3
 

Show that the singular point of each of the following functions is a pole. 

Determine the order m of that pole and the corresponding residue B. 

Suppose that a function f is analytic at z0, and write g(z) = f(z)/(z — 

z0). Show that 

(a) if f(z0) = 0, then z0 is a simple pole of g, with residue f(z0); 

(b) if f(z0) = 0, then z0 is a removable singular point of g. 

Suggestion: As pointed out in Sec. 57, there is a Taylor series for f(z) 

about z0 since f is analytic there. Start each part of this exercise by 

writing out a few terms of that series. 

Use the fact (see Sec. 29) that e
z
 = — 1 when z = (2n + 1)ni (n = 0, ±1, 
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±2,...) 

to show that e
1/z

 assumes the value —1 an infinite number of times in 

each neighborhood of the origin. More precisely, show that e
1/z

 = — 1 

when 

z
=~ n  '  n  (« = 0,±1,±2,...); (2n + 1)n 

then note that if n is large enough, such points lie in any given e 

neighborhood of the origin. Zero is evidently the exceptional value in 

Picard's theorem 

 

10.7 RESIDUES AT POLES 

 

When a function f has an isolated singularity at a point z0 , the basic 

method for identifying z0 as a pole and finding the residue there is to 

write the appropriate Laurent series and to note the coefficient of 1/(z — 

z0). The following theorem provides an alternative characterization of 

poles and a way of finding residues at poles that is often more 

convenient. 

Theorem. An isolated singular point z0 of a function f is a pole of order 

m if and only if f(z) can be written in the form 

/•/\(P(z) 

where $(z) is analytic and nonzero at z0 . Moreover, 

Res f(z)=$(i0) if m=1      z=z0 

and 

Res f(z)=— &{m—1)(z0) / ^ ifm > 2.        z=z0 (m — 1)! 

Observe that expression need not have been written separately since, 

with the convention that 0(0)(z0)=$(i0) and 0!=1, expression reduces to 

it when m=1. 
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To prove the theorem, we first assume that f(z) has the form and recall 

that since $(z) is analytic at z0, it has a Taylor series representation 

^ - », + + • - + - a,"- 

in some neighborhood |z — z01 < £ of z0; and from expression it follows 

that 

 <P(zo) <p'(zt))/l\ <p"(zo)/2\ (zn)/(m - 1)! 

J(Z)= TT^ + 77 _ ,„,_i + TT _ + ..... + 

(z — z0)m (z — z0)m 1 (z — z0)m 2 z — z0 + 2_ 1 ~ ^o)" 

when 0 < |z — zo| < e. This Laurent series representation, together with 

the fact that $(zo)=0, reveals that zo is, indeed, a pole of order m of f(z). 

The coefficient of 1/(z — Z0) tells us, of course, that the residue of f(z) 

at Z0 is as in the statement of the theorem. 

Suppose, on the other hand, that we know only that z0 is a pole of order 

m of f, or that f(z) has a Laurent series representation 

f(z) =jran(z - zo)" + —— + ^ 2 + • • • + b'n 

z — z0 (z — z0 )2 (z — z0)m 1 (z — z0)m    (bm=0) 

which is valid in a punctured disk 0 < Z —  0Z  < R2. The function $(z) 

defined by means of the equations 

ch(z)=\(z — za)mf(z) when z=z0,   \bm when z=z0 

evidently has the power series representation 

<P(z)=bm + bm —1(z — z0) + ..... +b2(z — z0) +b1(z — z0) +^7an(z 

— z0)m 

throughout the entire disk Z —  0Z  < R2. Consequently, $(z) is 

analytic in that disk and, in particular, at z0. Inasmuch as $(z0)=bm=0, 

expression is established; and the proof of the theorem is complete. 

EXAMPLE . The function 

f(z) =Z2 + 9 
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has an isolated singular point at z=3i and can be written 

ft\^(z) u ,/, z + 1 J(z) = — where (p(z) = z — 3i z + 3i 

Since $(z) is analytic at z=3i and $(3i)=0, that point is a simple pole of 

the function f; and the residue there is 

Bl=<P(3i)=— 3i + 1 —i 3 — i r=z • 6 

The point z=—3i is also a simple pole of f, with residue 

Bz=——.3+i/6 

EXAMPLE. If 

-3 + 2- 

f(Z)=I T3'  (z — i)3 

then 

f(z) = where 4>(z)=ti3 + 2z./ (z — i)3 

The function $(z) is entire, and $(i)=i=0. Hence f has a pole of order 3 at 

z=i, with residue 

4>" (i) 6i 

B=~2T=2!=u 

The theorem can, of course, be used when branches of multiple-valued 

functions are involved. 

EXAMPLE. Suppose that 

f(Z)=2 _L 1 ' 

Z2 + 1 

where the branch 

logz=lnr + id (r > 0, 0 < d < 2n) 

of the logarithmic function is to be used. To find the residue of f at the 

singularity z=i, we write 

$(z) (log z)
3
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f(z) = r where <p(z) = —.z — i z + i 

The function $(z) is clearly analytic at z=i; and, since 

(log i)
3
 (ln1 + in/2)

3
 n

3
 

<p(i)=8=  1—— = + 0,  

f has a simple pole there. The residue is 

B=<p(i)=- —.n
3
/16 

While the theorem can be extremely useful, the identification of an 

isolated singular point as a pole of a certain order is sometimes done 

most efficiently by appealing directly to a Laurent series.  

EXAMPLE. If, for instance, the residue of the function 

f(z) = sinhz / z
4
 

is needed at the singularity z=0, it would be incorrect to write 

f(z)=—j- where <p(z)=sinfu 

and to attempt an application of formula with m=4. For it is necessary 

that 0(z0)=0 if that formula is to be used. In this case, the simplest way to 

find the residue is to write out a few terms of the Laurent series for f(z), 

There it was shown that z=0 is a pole of the third order, with residue 

B=1/6. 

In some cases, the series approach can be effectively combined with the 

theorem  

 

10.8 ZEROS OF ANALYTIC FUNCTIONS 

Zeros and poles of functions are closely related. In fact, we shall see in 

the next section how zeros can be a source of poles. We need, however, 

some preliminary results regarding zeros of analytic functions. 

Suppose that a function f is analytic at a point zo. We know that all of the 

derivatives f(n)(z) (n=1, 2,...) exist at zo. If f(zo)=0 and if there is a 

positive integer m such that f(m)(zo)=0 and each derivative of lower 

file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2010.docx%23bookmark19


Notes 

73 

order vanishes at zo, then f is said to have a zero of order m at zo. Our 

first theorem here provides a useful alternative characterization of zeros 

of order m. 

Theorem. Let a function f be analytic at a point zo • It has a zero of order 

m at zo if and only if there is a function g, which is analytic and nonzero 

at zo , such that 

f(z)=(z — zo)mg(z). 

Both parts of the proof that follows use the fact that if a function is 

analytic at a point zo, then it must have a Taylor series representation in 

powers of z — zo which is valid throughout a neighborhood |z — zol < s 

of zo. 

We start the first part of the proof by assuming that expression holds and 

noting that since g(z) is analytic at zo , it has a Taylor series 

representation 

, > , > , g'(zo), , , g"(Zo), ,2 , g(z) — y(zo)H j-j—(z — zoH ̂ —(z — zo) 

+... 

in some neighborhood Z —  0Z  < s of zo. Expression thus takes the 

form 

/(z)=g(zo)(z - zo)'" + - Z0)'n+1 + - Z0)'"+2 + • • • 

when |z — zo| < s. Since this is actually a Taylor series expansion for 

f(z), according to Theorem it follows that and that 

= m\g(zo)=0. 

Hence zo is a zero of order m of f. 

Conversely, if we assume that f has a zero of order m at zo, the 

analyticity of f at Z0 and the fact that conditions hold tell us that in some 

neighborhood 

Z —  0Z  < e, there is a Taylor series 

fl , ^f"Hz0) f(z)=2^ —i—^ - ^o) 
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f(,n)(z0) fl»'+h{zo) /('"+2)(Z0), >2 , 

 i ^ ~(—1 111 (z — zo) H—-— „ . (z - so) + m\ (m + 

1)\ (m + 2)\ 

Consequently, f(z) has the form, where 

, , fim)(zo) , fim+h(zo), , , fim+2)(Z0), >2 , 

g(z) —  : 1    . (z — zo) + —  . (z — zo) + 

m\ (m + 1)\ (m + 2)\   (|z — zo I < e). 

The convergence of this last series when |z — zo I < e ensures that g is 

analytic in that neighborhood and, in particular, at zo Moreover, 

, , fim)(z 0) g(zo) = j— ± 0. 

This completes the proof of the theorem. 

EXAMPLE . The polynomial f(z)=z
3
 — 8=(z — 2)(Z2 + 2z + 4) has a 

zero of order m=1 at zo=2 since 

f(z)=(z — 2)g(z), 

where g(z)=Z2 + 2z + 4, and because f and g are entire and g(2)=12=o. 

Note how the fact that zo=2 is a zero of order m=1 of f also follows from 

the observations that f is entire and that 

f (2)=o and f '(2)=12=o. 

EXAMPLE . The entire function f(z)=z(ez — 1) has a zero of order m=2 

at the point zo=o since 

f (o)=f '(o)=o and f" (o)=2=o. 

In this case, expression becomes 

f(z)=(z — oyLg(z), 

where g is the entire function defined by means of the equations 

g(7)=l(eZ - 1)/z when z=0, 

g(7) 11 when z=0. 
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Our next theorem tells us that the zeros of an analytic function are 

isolated when the function is not identically equal to zero. 

Theorem. Given a function f and a point 70 , suppose that 

f is analytic at 70 ; 

f(z0)=0 but f(z) is not identically equal to zero in any neighborhood of 70 

. Then f(z)=0 throughout some deleted neighborhood 0 < Z —  70  < s 

of 70 • 

To prove this, let f be as stated and observe that not all of the derivatives 

of f at 70 are zero. If they were, all of the coefficients in the Taylor series 

for f about 70 would be zero; and that would mean that f(y) is identically 

equal to zero in some neighborhood of 70 . So it is clear from the 

definition of zeros of order m at the beginning of this section that f must 

have a zero of some finite order m at 70. According to Theorem 1, then, 

f(7)=(7 — 70)mg(7) 

where g(7) is analytic and nonzero at 70 . 

Now g is continuous, in addition to being nonzero, at 70 because it is 

ana- lytic there. Hence there is some neighborhood Z —  70 < s in 

which equation holds and in which g(7)=0 (see Sec. 18). Consequently, 

f(7)=0 in the deleted neighborhood 0 < Z —  70  < s; and the proof is 

complete. 

Our final theorem here concerns functions with zeros that are not all 

isolated. It was referred to earlier in Sec. 27 and makes an interesting 

contrast to Theorem. 

Theorem. Given a function f and a point 70 , suppose that 

f is analytic throughout a neighborhood N0 of 70 ; 

f(7)=0 at each point 7 of a domain D or line segment L containing 70 

Then f(7)=0 in N0; that is, f(7) is identically equal to zero throughout  

We begin the proof with the observation that under the stated conditions, 

f (7)=0 in some neighborhood N of 70. For, otherwise, there would be a 
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deleted neighborhood of 70 throughout which f(7)=0, according to 

Theorem; and that would be inconsistent with the condition that f(7)=0 

everywhere in a domain D  

or on a line segment L containing zo . Since f(z)=0 in the neighborhood 

N, then, it follows that all of the coefficients 

an= j  (/?=0, 1, 2 ) 

in the Taylor series for f (z) about Z0 must be zero. Thus f(z)=0 in the 

neighborhood N0, since the Taylor series also represents f(z) in N0. This 

completes the proof. 

10.9 ZEROS AND POLES 

The following theorem shows how zeros of order m can create poles of 

order m. 

Theorem . Suppose that 

two functions p and q are analytic at a point z0 ; 

p(z0)=0 and q has a zero of order m at z0 • 

Then the quotient p(z)/q(z) has a pole of order m at z0 • 

The proof is easy. Let p and q be as in the statement of the theorem. 

Since q has a zero of order m at z0, we know from Theorem that there is 

a deleted neighborhood of z0 throughout which q(z)=0; and so z0 is an 

isolated singular point of the quotient p(z)/q(z)• Theorem tells us, 

moreover, that 

q(z)=(z - z0)
m

g(z), where g is analytic and nonzero at z0 ; and this 

enables us to write 

£!£>= Where ^,=£!±2. q(z) (Z-Zo)
m

 g(Z) 

Since $(z) is analytic and nonzero at z0 , it now follows from the 

theorem in that z0 is a pole of order m of p(z)/q(z). 

EXAMPLE . The two functions 

p(z)=1 and q(z)=z(ez - 1) 
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are entire; and we know from Example that q has a zero of order m=2 at 

the point Z0=0. Hence it follows from Theorem that the quotient 

plz)=1 q(z) Z(ez - 1) 

has a pole of order 2 at that point. This was demonstrated in another way 

in Theorem  leads us to another method for identifying simple poles and 

finding the corresponding residues. This method, stated just below as 

Theorem, is sometimes easier to use than the theorem 

Theorem. Let two functions p and q be analytic at a point Z0  If P(Z0)=0, 

q(Z0)=0, and q'Z)=0,  then Z0 is a simple pole of the quotient p(z)/q(z) 

and 

Res = p(z) p(Z0) / Z=Z0 q(z) q'(Z0) 

To show this, we assume that p and q are as stated and observe that 

because of the conditions on q, the point z0 is a zero of order m=1 of that 

function. According then, 

q(z)=(z - Z0)g(z) 

where g(z) is analytic and nonzero at Z0- Furthermore, Theorem in this 

section tells us that Z0 is a simple pole of p(z)/q(z); and expression for 

p(z)/q(z) in the proof of that theorem becomes 

p(z)/q(z)   =   $(z) / z - Z0 where <p(z) =p(z)/f(z)   

Since this $(z) is analytic and nonzero at Z0, we know from the theorem 

that 

Resrl7=rlM.     z=z0 q(z) g(Z0) 

But g(z0)=q'(Z0), as is seen by differentiating each side of equation and 

then setting z=Z0- Expression thus takes the form. 

EXAMPLE. Consider the function 

f(z)=cot 7 = cos z / sin z 

which is a quotient of the entire functions p(z)=cosz and q(z)=sinz. Its 

singularities occur at the zeros of q, or at the points 

z=nn (n=0, ±1, ±2,...). 
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Since 

p(nn)=(-1)
n
=0, q(nn)=0, and q '(nn)=(— 1)

n
=0, each singular point z=nn 

of f is a simple pole, with residue 

D p(ri7T) (-1)" 1      tSyt - X. 

q'(nn) ( — 1)" 

Although this residue can also be found by the method in the 

computation is somewhat more involved. There are formulas similar to 

formula for residues at poles of higher order, but they are lengthier and, 

in general, not practical. 

EXERCISES 

 Show that the point z=0 is a simple pole of the function 

f(z)=cscz = 1/sin z 

and that the residue there is unity by appealing to 

Laurent series for cscz that was found in Exercise  

 Show that 

z - sinh z i (a) Res , = 

z=m Z2 sinh z n 

lb) Rest*>+ Res 55M=-2„S(«>. 

z=ni sinh z z=-ni sinh z 

 Show that 

Res(^sec^)=(—1)"+1 where=—+«jr (/;=0, ±1, ±2, ...); 

z=zn 2 

Res(tanlu)=1 where z„=(— i (n=0, ±1, ±2,...). 

z=zn V 2 ' 

 Let C denote the positively oriented circle |z|=2 and evaluate the 

integral 



Notes 

79 

/t\1 dz 

tanz dz: 

(a) f tan^ dz: (b) f —- Jc Jc sir 

'C JC sinh 2z 

Ans. (a) —4ni; (b) —ni. 

 Let CN denote the positively oriented boundary of the square 

whose edges lie along 

the lines / x / x 

,r=±(iV + -jjr and y=±(iV+-jjr,where N is a positive integer. Show that 

dz 

= 2ni 

CN Z2 sin z Then, using the fact that the value of this integral tends to 

zero as N tends to infinity point out how it follows that 

T. (-1)',+1 jr2 

~ IT 

n=1 

 Show that 

dz n 

I 

c (Z2 — l)2 + 3 2</2 ' 

where C is the positively oriented boundary of the rectangle whose sides 

lie along the lines x=±2, y=0, and y=1. 

Suggestion: By observing that the four zeros of the polynomial q{z)={Z2 

— l)2 + 3 are the square roots of the numbers 1 ± </3/, show that the 

reciprocal 1 /q (z) is analytic inside and on C except at the points 

</3 + /   — </3 + ; 
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zo=^r an" = 

Then apply Theorem. 

 Consider the function 

f(z) = 1 / [q(z)}2 

where q is analytic at z0, q(z0)=0, and q'(z0)=0. Show that Z0 is a pole 

of order m=2 of the function f, with residue 

q" (z0) 

[q '(z0)]3 

Suggestion: Note that z0 is a zero of order m=1 of the function q, so that 

q(z)=(z - z0)g(z) where g(z) is analytic and nonzero at z0. Then write 

/U)=, where </>(z)=1 

(z - z0)2 [g(z)]2 

The desired form of the residue B0=$'(z0) can be obtained by showing 

that 

q '(z0)=g(z0) and q "(z0)=2g'(z0). 

 Use the result in Exercise to find the residue at z=0 of the 

function 

(a) f(z)=csc2 z; (b) f(z) = 

(z + Z2)2 Ans. (a) 0; (b) -2. 

 Let p and q denote functions that are analytic at a point z0 , where 

p(z0)=0 and q(z0)=0. Show that if the quotient p(z)/q(z) has a 

pole of order m at z0 , then z0 is a zero of order m of q. 

p(z) _ <p(z) q(z) (Z-Zo)"r where 0(z) is analytic and nonzero at zo . Then 

solve for q(z). 

 Recall that a point Z0 is an accumulation point of a set S if each 

deleted neighborhood of Z0 contains at least one point of S. One 

form of the Bolzano- Weierstrass theorem can be stated as 

follows: an infinite set of points lying in a closed bounded region 
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R has at least one accumulation point in R.4 Use that theorem and 

Theorem to show that if a function f is analytic in the region R 

consisting of all points inside and on a simple closed contour C, 

except possibly for poles inside C, and if all the zeros of f in R 

are interior to C and are of finite order, then those zeros must be 

finite in number. 

 Let R denote the region consisting of all points inside and on a 

simple closed contour C. Use the Bolzano-Weierstrass theorem 

and the fact that poles are isolated singular points to show that if f 

is analytic in the region R except for poles interior to C, then 

those poles must be finite in number. 

 

BEHAVIOR OF FUNCTIONS NEAR ISOLATED SINGULAR 

POINTS 

As already indicated the behavior of a function f near an isolated singular 

point zo varies, depending on whether zo is a pole, a removable singular 

point, or an essential singular point. In this section, we develop the 

differences in behavior somewhat further. Since the results presented 

here will not be used elsewhere in the book, the reader who wishes to 

reach applications of residue theory more quickly may pass directly to 

without disruption. 

Theorem . If zo is a pole of a function f, then 

lim f(z)=to. 

To verify limit, we assume that f has a pole of order m at zo and use the 

theorem. It tells us that 

f(z) = ft\^{z) / (z - zo)m 

where $(z) is analytic and nonzero at zo. Since 

i (z .n)m lim(z - zo)m  

T 1 T 
(z - zo)

 z^zo  n 

                                                      

. 
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lirri  = lirri   = = = 0, 

z^zo f(z) z^zo (p(z) lim (p(z) (p(zo) 

then, limit holds, according to the theorem in regarding limits that 

involve the point at infinity. 

The next theorem emphasizes how the behavior of f near a removable 

singular point is fundamentally different from behavior near a pole. 

Theorem  Ifz0 is a removable singular point of a function f, then f 

isanalytic and bounded in some deleted neighborhood 0 < Z —  0Z  < £ 

of Z0 . 

The proof is easy and is based on the fact that the function f here is 

analytic in a disk Z —  0Z  < R2 when f(zo) is properly defined; f is 

then continuous in any closed disk Z —  0Z  <£ where £ < R2. 

Consequently, f is bounded in that disk, and this means that, in addition 

to being analytic, f must be bounded in the deleted neighborhood 0 < 

Z —  0Z < £. 

The proof of our final theorem, regarding the behavior of a function near 

an essential singular point, relies on the following lemma, which is 

closely related to Theorem and is known as Riemann's theorem. 

Lemma. Suppose that a function f is analytic and bounded in some 

deleted neighborhood 0 < Z —  0Z  < £ of a point z0 . If f is not 

analytic at z0 , then it has a removable singularity there. 

To prove this, we assume that f is not analytic at zo. As a consequence, 

the point z0 must be an isolated singularity of f; and f(z) is represented 

by a Laurent series throughout the deleted neighborhood 0 < Z —  0Z

<£. If C denotes a positively oriented circle |z — zq|=p, where p < £ that 

the coefficients bn in expansion can be written 

bn=— [ f(Z) dZ (n=1,2,...). 2niJc (z-zo)~"+1 
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Now the boundedness condition on f tells us that there is a positive 

constant M such that |f (z)| < M whenever 0 < Z —  0Z  < e. Hence it 

follows from expression 

that 

\b„\ <  2np=Mp" (n=1,2,...). 2n p n+1 

Since the coefficients bn are constants and since p can be chosen 

arbitrarily small, we may conclude that bn=0 (n=1, 2,...) in the Laurent 

series. This tells us that Z0 is a removable singularity of f, and the proof 

of the lemma is complete. 

We know from that the behavior of a function near an essential singular 

point is quite irregular. The next theorem, regarding such behavior, is 

related to Picard's theorem in that earlier section and is usually referred 

to as the Casorati Weierstrass theorem. It states that in each deleted 

neighborhood of an essential singular point, a function assumes values 

arbitrarily close to any given number. 

Theorem. Suppose that Z0 is an essential singularity of a function f, and 

let W0 be any complex number. Then, for any positive number e, the 

inequality 

\f(z) — W0| < e 

is satisfied at some point z in each deleted neighborhood 0 < Z —  0Z  

<8 of Z0 

assume that condition (4) is not satisfied for any point z there. Thus \f(z) 

- W0i> £ when 0 < \z — Z0\<5; and so the function 

g(z)=——^  (0 < Z —  0Z  < 5) 

is bounded and analytic in its domain of definition. Hence, according to 

our lemma, Z0 is a removable singularity of g; and we let g be defined at 

Z0 so that it is analytic there. 

If g(z0)=0, the function f(z), which can be written 

f(z)=1/g(z0) + w0 
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when 0 < \z — z0\<5, becomes analytic at z0 when it is defined there as 

1 

f(zo)=—   + wo. 

g(z0) 

But this means that z0 is a removable singularity of f, not an essential 

one, and we have a contradiction. 

 

If g(z0)=0, the function g must have a zero of some finite order m at z0 

because g(z) is not identically equal to zero in the neighborhood \z — z0\ 

<5. In view of equation, then, f has a pole of order m at z0 

 

Check your Progress-1 

Discuss Residues And Poles  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Zeros And Poles 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

 

10.10 LET US SUM UP 

In this unit we have discussed the definition and example of Residues 

And Poles, Isolated Singular Points, Residue, Cauchy's Residue 

Theorem, Residue At Infinity, Residues At Poles, Zeros Of Analytic 

Functions, Zeros And Poles 
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10.11 KEYWORDS 

Residues And Poles.. The Cauchy-Goursat theorem states that if a 

function is analytic at all points interior to and on a simple closed 

contour C 

 

Isolated Singular Points  Recall that a point Z0 is called a singular point 

of a function f if f fails to be analytic at Z0 but is analytic at some point 

in every neighborhood of Z0 

Residue  When Z0 is an isolated singular point of a function f, there is a 

positive number R2 such that f is analytic at each point z for which 0 < |z 

— Z0I < R2. 

Cauchy's Residue Theorem  If, except for a finite number of singular 

points, a function f is analytic inside a simple closed contour C, 

Residue At Infinity  Suppose that a function f is analytic throughout the 

finite plane except for a finite number of singular points interior to a 

positively oriented simple closed contour c . 

Residues At Poles  When a function f has an isolated singularity at a 

point z0 , the basic method for identifying z0 as a pole and finding the 

residue there is to write the appropriate Laurent series 

Zeros Of Analytic Functions  Zeros and poles of functions are closely 

related. In fact, we shall see in the next section how zeros can be a source 

of poles. We need, however, some preliminary results regarding zeros of 

analytic functions 

Zeros And Poles   The theorem shows how zeros of order m can create 

poles of order m. 

 

10.12 QUESTIONS FOR REVIEW 

Explain Residues And Poles 

Explain Zeros And Poles 
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10.13 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Residues And Poles    (answer for Check your Progress-1 

Q) 

Zeros And Poles     (answer for Check your Progress-1 

Q) 

 

10.14 REFERENCES 

 Complex Functions & Variables 

 Complex Variables 

 Complex Functions 

 Complex Numbers & Analysis 

 The Complex Number System 
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UNIT-11 : APPLICATIONS OF 

RESIDUES  

 

STRUCTURE 

11.0 Objectives 

11.1 Introduction 

11.2 Applications Of Residues 

11.3 Evaluation Of Improper Integrals 

11.4 Improper Integrals From Fourier Analysis 

11.5 Jordan's Lemma 

11.6 Integration Along A Branch Cut 

11.7 Definite Integrals Involving Sines And Cosines 

11.8 Argument Principle 

11.9 Rouche's Theorem 

11.10 Let Us Sum Up   

11.11 Keywords   

11.12 Questions For Review   

11.13 Answers To Check Your Progress 

11.14 References  

11.0 OBJECTIVES 

 

After studying this unit, you should be able to: 

 

Learn, Understand about Applications Of Residues 
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Evaluation Of Improper Integrals 

Improper Integrals From Fourier Analysis 

Jordan's Lemma 

Integration Along A Branch Cut 

Definite Integrals Involving Sines And Cosines 

Argument Principle 

Rouche's Theorem 

11.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis .  

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Applications Of Residues, Evaluation Of Improper Integrals, Improper 

Integrals From Fourier Analysis, Jordan's Lemma, Integration Along A 

Branch Cut, Definite Integrals Involving Sines And Cosines, Argument 

Principle, Rouche's Theorem 

11.2 APPLICATIONS OF RESIDUES 

We turn now to some important applications of the theory of residues, 

which was developed. The applications include evaluation of certain 

types of definite and improper integrals occurring in real analysis and 

applied mathematics. Considerable attention is also given to a method, 

based on residues, for locating zeros of functions and to finding inverse 

Laplace transforms by summing residues. 

11.3 EVALUATION OF IMPROPER 

INTEGRALS 

In calculus, the improper integral of a continuous function f(x) over the 

semi- infinite interval 0 < x < to is defined by means of the equation 
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When the limit on the right exists, the improper integral is said to 

converge to that limit. If f(x) is continuous for all x, its improper integral 

over the infinite interval —to < x < to is defined by writing and when 

both of the limits here exist, we say that integral converges to their sum. 

Another value that is assigned to integral is often useful. Namely, the 

Cauchy principal value (P.V.) of integral is the number provided this 

single limit exists. 

If integral converges, its Cauchy principal value exists; and that value is 

the number to which integral converges these last two limits are the same 

as the limits on the right in equation  

But suppose that f(x) (—to < x < to) is an even function, one where 

f(—x)=f(x) for allx,and assume that the Cauchy principal value exists. 

The symmetry of the graph of y=f(x) with respect to the y axis tells us 

f(x)=p(x)/q(x), where p(x) and q(x) are polynomials with real 

coefficients and no factors in common. We agree that q(z) has no real 

zeros but has at least one zero above the real axis. 

The method begins with the identification of all the distinct zeros of the 

polynomial q(z) that lie above the real axis. They are, of course, finite in 

number and may be labeled Z1, Z2, ....., zn, where n is less than or equal to 

the degree of q(z). We then integrate the quotient 

p(z) 

f(z) =q(z) 

around the positively oriented boundary of the semicircular region  

That simple closed contour consists of the segment of the real axis from 

z=—R to z=R and the top half of the circle |z|=R, described 

counterclockwise and denoted by CR. It is understood that the positive 

number R is large enough so that the points z\,zz,..., zn all lie inside the 

closed path. 

The parametric representation z=x(—R < x < R) of the segment of the 

real axis just mentioned and Cauchy's residue theorem can be used to 

write 
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f (x) dx + f f(z)dz=2ni Res f(z), R Jcr rr z=zk 

f (x) dx=2ni Res f(z) — I f(z)dz. R rT z=« Jcr 

lim f f(z)dz=0, 

R^^J CR 

it then follows that 

CO n 

f(x) dx=2ni Y^ Resf (z); 

and if f(x) is even, equations  

f(x) dx=2ni Y^ Resf(z) 

o k=1 z=zk 

and 

f f(x)dx=ni Y^ Res f(z). 

Example : we start with the observation that the function 

f(z) = Z2 / z6 + 1 

has isolated singularities at the zeros of z6 + 1, which are the sixth roots 

of -1, and is analytic everywhere else. The method for finding roots of 

complex numbers reveals that the sixth roots of — 1 are 

and it is clear that none of them lies on the real axis. The first three roots, 

c0=e
in/6

, c1=i, and c2=e
i5n/6

, 

lie in the upper half plane and the other three lie in the lower one. When 

R > 1, the points ck (k=0, 1, 2) lie in the interior of the semicircular 

region bounded by the segment z=x (-R < x < R) of the real axis and the 

upper half CR of the circle |z|=R from z=R to z=—R. Integrating f(z) 

counterclockwise around the boundary of this semicircular region, we 

see that 

f f(x)dx + f f(z)dz=2ni(B0 + B1 + B2), where Bk is the residue of f(z) at 

ck (k=0, 1, 2). 
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We find that the points ck are simple poles of f and that 

Bk=Res -f—=-L = (*=0,1,2). 

z=ck z
6
 + 1 6c5 6c3  

Thus 

2ni(Bo + B\ + Bi)=2ni — — + —^=—; and equation can be put in the 

form 

f f(x)dx=^~ — f f(z)dz, 

which is valid for all values of R greater than 1. 

Next, we show that the value of the integral on the right in equation tends 

to 0 as R tends to to. To do this, we observe that when |z|=R, 

|Z2|=|z|
2
=R

2
 

and 

|z
6
 + 1| >||z|

6
 - 1|=R

6
 - 1. 

So, if z is any point on CR, 

|Z2| R
2
 1/(^)1=7"7 77 - Mr where Mr =|z6 + 1| - R R

6
 - 1: 

and this means that 

f(z) dz 

nR being the length of the semicircle CR. Since the number 

nR3 MrtzR =R6 1 

is a quotient of polynomials in R and since the degree of the numerator is 

less than the degree of the denominator, that quotient must tend to zero 

as R tends to to. More precisely, if we divide both numerator and 

enominator by R6 and write 

Mr nR = 1_F 

it is evident that MR nR tends to zero. Consequently, in view of 

inequality  
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lim/f(z) dz=0. 

R^TO-/ Cr 

It now follows from equation that 

 

 Use residues to find the Cauchy principal values of the integrals 

in Exercises  

 Use a residue and the contour where R > 1, to establish the 

integration formula 

(k=0, I, 2,...,n - Iand that there are none on that axis. 

 show thatz2m I 

Res -i- = e''(2k+1)a (k=0, 1, 2 n - 1) 

z=ck z + I 2n 

where ck are the zeros found in part (a) and 

2m + I 

a=— jr. 

2n 

Then use the summation formula 

n — I I _ zn 

E^A"=—7 k=0 - z 

to obtain the expression 

n—I 

2ni\^ Res 

' J 7=C1, 

z=ck z2n + I n sin a 

k=0 



Notes 

93 

 Use the final result in part (b) to complete the derivation of the 

integration formula. 

 [(2a2 3)VA. a a*JA. — a\, 

[(x2 - a)2 + 1] 2 8V2A3  

where a is any real number and A=s/ a2 + 1, arises in the theory of 

case-hardening of steel by means of radio-frequency heating.5 

Follow the steps below to derive it. 

 Point out why the four zeros of the polynomial 

q(z)=(Z2 - a)2 + 1 are the square roots of the numbers a ± i. Then, using 

the fact that the numbers 

Zo=—7= (~F a ~F ' s/ A — a) 

V 2 

and — zo are the square roots of a + i  verify that ±zo are the square 

roots of a — i and hence that zo and —zo are the only zeros of q(z) in the 

upper half plane Im z > 0. 

 Using the method derived and keeping in mind that z(j=a + i for 

purposes of simplification, show that the point Z0 in part (a) is a 

pole of order 2 of the function f(z)=1/[q(z)]2 and that the residue 

B1 at Z0 can be written 

_ ci"Co) _ a - i (2a2 + 3) 

1 k/(zo)]3 16A2zo ' 

After observing that q'{—z)=— q'(z) and q"(—z)=q"(z), use the same 

method to show that the point —zo in part (a) is also a pole of order 2 of 

the function f(z), with residue 

q"{zo))  = -i>i-[q'(z0)]3 

Then obtain the expression—a + i(2a2 + 3) 
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Im z0for the sum of these residues. 

(c) Refer to part (a) and show that |q(z)| > (R — |z0|)4 if |z|=R, where R > 

|z0|. Then, with the aid of the final result in part (b), complete the 

derivation of the integration formula. 

11.4 IMPROPER INTEGRALS FROM 

FOURIER ANALYSIS 

Residue theory can be useful in evaluating convergent improper integrals 

of the form 

f(x) sin ax dx or/f(x) cos axdx, 

where a denotes a positive constant. we assume that f(x)=p(x)/q(x) where 

p(x) and q(x) are polynomials with real coefficients and no factors in 

common. Also, q(x) has no zeros on the real axis and at least one zero 

above it. Integrals of type occur in the theory and application of the 

Fourier integral. The method described cannot be applied directly here 

since  

|sin az\2=sin2 ax + sinh2 ay 

and 

|cos az|2=cos2 ax + sinh2 ay. 

More precisely, since 

eay _ e-ay 

sinh av = - , 

the moduli | sin az| and |cos az| increase like eay as y tends to infinity. 

The modification illustrated in the example below is suggested by the 

fact that 

/ 

R r R rR 

f(x) cos ax dx + i I f(x) sin ax dx=I f(x)eiax dx, 
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R -R -R 

together with the fact that the modulus 

|eiaz|=|eia(x+iy)|=|e-ayeiax|=e-ay 

is bounded in the upper half plane y > 0. 

EXAMPLE. Let us show  

cos 3x 2n 

(.v2 + l)
2
 

Because the integrand is even, it is sufficient to show that the Cauchy 

principal value of the integral exists and to find that value. 

We introduce the function 

f(z) = (Z2 + 1)
2
 

and observe that the product f(z)ei3z is analytic everywhere on and 

above the real axis except at the point z=i. The singularity z=i lies in the 

interior of the semicircular region whose boundary consists of the 

segment — R < x < R of the real  

axis and the upper half CR of the circle |z|=R (R > 1) from z=R to z=—R  

Integration of f(z)e
l3z

 around that boundary yields the equation 

R e
l3X 

p 

dx=2,tZ1B\ - f(z)e
l3z

 dz . R (x + 1)  

where 

B1=Res [f(z)e
l3z

] 

Since 

&(z) where $(z) = (z — i )2 (z + i )2' 

the point z=l is evidently a pole of order m=2 of f(z)el 3z; and 

Bi=<p'(i)=^3. ie3 

By equating the real parts on each side of equation then, we find that 
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R cos 3x  z , 1 zzdx=~T ~re f f^e'3z dz-—R (x2 + 1)2 e3 .. c2 + 1)2 

Finally, we observe that when z is a point on CR 

|/U)| < Mr where Mr = (R2 — 1)
2
 

and that |el3z|=e—3y < 1 for such a point. Consequently 

11.5 JORDAN'S LEMMA 

 

In the evaluation of integrals of the type treated, it is sometimes 

necessary  to use Jordan's lemma * which is stated just below as a 

theorem. 

Theorem. Suppose that a function f(z) is analytic at all points in the 

upper half plane y > 0 that are exterior to a circle |z|=R0; 

Cr denotes a semicircle z=Re'e(0 < 6 < n), where R > R0 ; 

for all points z on Cr, there is a positive constant Mr such that 

lf(z)l < Mr and lim MR=0. 

R^ro 

Then, for every positive constant a, 

lim f f (z)eiaz dz=0. 

R^roJ CR 

The proof is based on Jordan's inequality: 

P~Rsine df) c 

To verify it, we first note from the graphs of the functions 

y=sin 9 and v=— 

that 

sin 6 > — when 0 < 9 < —. 

Consequently, if R > 0, 
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e-Rsm8 < -2R6/x when Q < g < * 

and so rn/2 rn/2 n 

e~Rsm-d9< e~2R-/7T d9=— (1 -e~R) (R > 0). 

Hence 

I e-Rsined9<— (R> 0). 

But this is just another form of inequality, since the graph of y=sin 6 is 

symmetric with respect to the vertical line 6=n/2 on the interval 0 < 6 < 

n. Turning now to the proof of the theorem, we accept statements (a)- (c) 

there and write 

[ f(z)eiazdz =[ f(Rei6) exp(iaRei6)Riei6 d6. and in view of Jordan's 

inequality, it follows that 

f (z)e dz>cr 

The final limit in the theorem is now evident since MR ^ 0as R ^tx>. 

EXAMPLE. Let us find the Cauchy principal value of the integral 

x sin xdx       c
2
 + 2x + 2

 As usual, the existence of the value in question will be established by 

our actually finding it. 

We write 

f,=z=z ~ Z2 + 2z + 2 (z — Z1) (z -zl)' 

where Z1 =— 1 + i. The point Z1, which lies above the x axis, is a simple 

pole of the function f(z)eiz, with residue 

Bl=^=7i e
iz1

 / zt - Z1 

Hence, when R > \fl and CR denotes the upper half of the positively 

oriented circle |z|=R, and that |eiz|=e—y < 1 for such a point. By 

proceeding as we did in the examples, we cannot conclude that the right-

hand side of inequality, and hence its left-hand side, tends to zero as R 

tends to infinity. For the quantity does not tend to zero. The above 

theorem does, however, provide the desired limit, namely 
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lim/f(z)elzdz=0, 

since 

Mr = — ^ —> 0 as R 00 . 

So it does, indeed, follow from inequality that the left-hand side there 

tends to zero as R tends to infinity. Consequently, equation, together with 

expression for the residue B1, tells us that 

x sin x uxn =Im(27r/fii)=— (sin 1 + cos 1). 

EXAMPLE. Modifying the method used we derive here the integration 

formula 

„ s sinx n 

I  dx=-J0 

by integrating eiz/z around the simple closed contour.p and R denote 

positive real numbers, where p < R; and L1 and L2 represent the 

intervals 

P < x < R and — R < x < —p, 

respectively, on the real axis. While the semicircle CR, the semicircle Cp 

is introduced here in order to avoid passing through the singularity z=0 

of the quotient elz/z. 

The Cauchy-Goursat theorem tells us that 

[ — dz+f — dz+f — dz+f Jl\ z Jcr z Jl2 z Jc 

or 

f eiz f eiz f eiz f eiz 

I — dz+ — dz=— I — dz — I — dz. JL\ z JL2 z P Cp z JCr z 

Moreover, since the legs L1 and — L2 have parametric representations 

z=rel°=r (p < r < R) and z=rel7t=—r(p < r < R),respectively, the left-

hand side of equation can be written 

c piz f piz fR Pir fR p-ir f 
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I — dz — I — dz=I — dr — I -— dr=2i I 

Jli z J-l2 z Jp r Jp r Jp L z 

Consequently, 

R sin r piz piz 

2i I  dr=— I — dz — I 

Jp r Jcn z Jc 

Now, from the Laurent seriesr representation 

It is clear that pizlz has a simple pole at the origin, with residue unity. So, 

according to the theorem at the beginning of this section, 

lim I — dz=—ni. 

p^0JCp z 

Also, since when z is a point on CR, we know from Jordan's lemma that 

lim/— dz=0. 

R^™JcR z Thus, by letting p tend to 0 in equation and then letting R tend 

to to, we arrive at the result 

„ sin r 2i I  dr=ni. 

11.6 INTEGRATION ALONG A BRANCH 

CUT 

 

Cauchy's residue theorem can be useful in evaluating a real integral when 

part of the path of integration of the function f(z) to which the theorem is 

applied lies along a branch cut of that function. 

EXAMPLE. Let x -a, where x > 0 and 0 < a < 1, denote the principal 

value of the indicated power of x; that is, x-a is the positive real number 

exp(-a lnx).  We shall evaluate here the improper real integral 

x —a 
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I  -dx (0 < a < 1), 

x + 1 

which is important in the study of the gamma function.* Note that 

integral  is improper not only because of its upper limit of integration but 

also because its integrand has an infinite discontinuity at x=0. The 

integral converges when 0 < a < 1 since the integrand behaves like x—a 

near x=0 and like x—a—1 as x                        tends to infinity. We do 

not, however, need to establish convergence separately for that will be 

contained in our evaluation of the integral. 

We begin by letting Cp and CR denote the circles |z|=p and |z|=R, respec- 

tively, where p < 1 < R; and we assign them the orientation We then 

integrate the branch 

Z—a 

f(z)=- (|z| > o, 0 < argz < 2n) 

z + 1 

of the multiple-valued function z—a/(z + 1), with branch cut argz=0, 

around the simple closed contour indicated. That contour is traced out by 

a point moving from p to R along the top of the branch cut for f(z), next 

around CR and back to R, then along the bottom of the cut to p, and 

finally around Cp back to p R x 

Now Q=0 and Q=2n along the upper and lower "edges," respectively, of 

the cut annulus that is formed. Since 

exp(—a logz) exp[—a(lnr + iQ)] 

f(z) = reiQ + 1 

where z=relQ, it follows that 

exp[—a(ln r + i 0)] r 

f(z) = r + 1 

on the upper edge, where z=rei0, and thatexp[—a(lnr + i2n)] r ae 
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f(z) = r + 1 

on the lower edge, where z=rei2n. The residue theorem thus suggests that 

fR r a f f—~7dr + f(z) dz- Jp r + 1 JCR Jp= 2ni Res f(z). 

z=—1 

Our derivation of equation is, of course, only formal since f(z) is not 

analytic, or even defined, on the branch cut involved. It is, nevertheless, 

valid and can be fully justified by an argument of this section. The 

residue in equation can be found by noting that the function 

$(z)=z~"=exp(-a logz)=exp[—a(lnr + i9)] (r > 0, 0 < 9 < 2n) 

is analytic at z=— 1 and that 

$(—1)=exp[—a(ln 1 + in)]=e~ian=0. 

This shows that the point z=— 1 is a simple pole of the function and that 

Res f(z)=e~ian. 

z=—1 

Equation can, therefore, be written as 

(l-e~lZa7T)[ ^—dr=2nie~ia7T-[ f(z)dz~[ f(z)dz. 

According to definition of f(z), 

Since 0 < a < 1, the values of these two integrals evidently tend to 0 as p 

and R tend to 0 and to, respectively. Hence, if we let p tend to 0 and then 

R tend to in equation, we arrive at the result 

p to r —a (1 _ £-'2«T)  dr=2nie~ia7T, 

or 

p to r —a e—ian e^an 21 

I    dr=2ni- ^—• ——= n— :—. 

J0 r + 1 1   e—i2an eian eian  e—ian 

fTO x—a n 
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I  dx=—  (0 < a < 1). 

Apply the Cauchy-Goursat theorem to the branch 

z—a ( n 5n) 

fz(z)=—— ( kl > o, - < argz < — z + 1 \ 2 2 

of z—a/(z + 1), integrated around the closed contour on the right 

pR r—a^— i2anp f f 

- —7—j—df+ f2(z) dz- fZ1z) dz+ f2(z)dz=0. J p r + 1 J Yp J L

 J yr 

Point out why, in the last lines in parts (a) and (b), the branches p(z) and 

f2(z) of z—a/(z + 1) can be replaced by the branch 

z—a 

fiz)=——- (kl > 0, 0 < argz < In), z + 1 

11.7 DEFINITE INTEGRALS INVOLVING 

SINES AND COSINES 

 

The method of residues is also useful in evaluating certain definite 

integrals of the type 

/ F(sin9, cos9)d9. 

The fact that  varies from 0 to 2n leads us to consider 9 as an argument of 

a point z on a positively oriented circle C centered at the origin. Taking 

the radius to be unity, we use the parametric representation 

z=e
i9

 (0 < 9 < 2n) 

dz/d9=le
i9

=iz and that 

sin d = e
i9

 — e
—i9

/2i  cos 9 = e
i9

 + e
—i9

/2 

These relations suggest that we make the substitutions 

 sinO=2i     cos9=2 iz 
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of a function of z around the circle C. The original integral is, of course, 

simply a parametric form of integral in accordance with expression 

When the integrand in integral reduces to a rational function of z, we can 

evaluate that integral by means of Cauchy's residue theorem once the 

zeros in the denominator have been located and provided that none lie on 

C. 

I 1 , "A,-. ^=A" o ( —1 < a < 1). 

This integration formula is clearly valid when a=0, and we exclude that 

case in our derivation. With substitutions, the integral takes the form 

I z' + mU-i dz' 

where C is the positively oriented circle |z|=1. The quadratic formula 

reveals that the denominator of the integrand here has the pure imaginary 

zeros 

/ —1 + Vl — «
2
\ ./—1 — Vl — «

2
\ . 

So if f(z) denotes the integrand in integral then 

f(z) = (z - Z1)(z - Z2) 

Note that because \a\ < 1, 

l + vTr 

l-2l= —  > 1. 

Also, since \z1Z2l=1, it follows that |Z1| < 1.  Hence there are no singular 

points on C, and the only one interior to it is the point Z1. The 

corresponding residue B1 is found by writing 

S(z) 2/a f(z) =  where <p(z) = Z - Z1 Z - Z2 

This shows that Z1 is a simple pole and that  

B\=4>(z\)=' 

Zl ~ Z2 i*J1 — 

Consequently, 
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2/a 2n 

dz=2niB\ = !c Z2 + (2i/a)z — I Vl — a
2
 

and integration formula follows. 

The method just illustrated applies equally well when the arguments of 

the sine and cosine are integral multiples of Q. One can use equation to 

write, for example, 

el2Q + e-l2Q (eiQ)2 + (eiQ)-2 Z2 + Z-2  

11.8 ARGUMENT PRINCIPLE 

The function f is said to be meromorphic in a domain D if it is analytic 

throughout D except for poles. Suppose now that f is meromorphic in the 

domain interior to a positively oriented simple closed contour C and that 

it is analytic and nonzero on C. The image Y of C under the 

transformation w=f(z) is a closed contour, not necessarily simple, in the 

w plane As a point z traverses C in the positive direction, its images w 

traverses Y in a particular direction that determines the orientation of Y. 

Note that since f has no zeros on C, the contour Y does not pass through 

the origin in the w plane.  

Let W0 and w be points on Y, where W0 is fixed and is a value of arg 

w0. Then let arg w vary continuously, starting with the value 00, as the 

point w begins at the point w0 and traverses Y once in the direction of 

orientation assigned to it by the mapping w=f(z). When w returns to the 

point wo, where it started, arg w assumes a particular value of arg wo, 

which we denote by fai. Thus the change in arg w as w describes T once 

in its direction of orientation is fa — fao. This change is, of course, 

independent of the point wo chosen to determine it- Since w=f(z), the 

number fa — fao is, in fact, the change in argument of f(z) as z describes 

C once in the positive direction, starting with a point zo; and we write 

Ac arg f(z)=fa — fa 

The value of AC arg f(z) is evidently an integral multiple of 2n, and the 

integer 
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1— Ac arg f(z) 

Represents the number of times the point w winds around the origin in 

the w plane- For that reason, this integer is sometimes called the winding 

number of T with respect to the origin w=0- It is positive if T winds 

around the origin in the counterclockwise direction and negative if it 

winds clockwise around that point- The winding number is always zero 

when T does not enclose the origin.  

The winding number can be determined from the number of zeros and 

poles of f interior to C. The number of poles is necessarily finite. 

Likewise, with the understanding that f(z) is not identically equal to zero 

everywhere else inside C, it is easily that the zeros of f are finite in 

number and are all of finite order. Suppose now that f has Z zeros and P 

poles in the domain interior to C. We agree that f has mo zeros at a point 

zo if it has a zero of order mo there; and if f has a pole of order mp at zo, 

that pole is to be counted mp times. The following theorem, which is 

known as the argument principle, states that the winding number is 

simply the difference Z — P. 

Theorem. Let C denote a positively oriented simple closed contour, and 

suppose that a function f(z) is meromorphic in the domain interior to C; 

f(z) is analytic and nonzero on C; 

counting multiplicities, Z is the number of zeros and P the number of 

poles of f(z) inside C. 

Then — Ac arg f(z)=Z - P. 

To prove this, we evaluate the integral of f '(z)/f(z) around C in two 

different ways. First, we let z=z(t) (a < t < b) be a parametric 

representation for C, so that Since, under the transformation w=f(z), the 

image T of C never passes through the origin in the w plane, the image of 

any point z=z(t) on C can be expressed in exponential form as w=p(t) 

exp[i<^(t)]. Thus 

f [z(t)]=p(t)e'm (a < t < b); 
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and, along each of the smooth arcs making up the contour T,  

f'[z(t)]z'(t)=^-f[z(t)]=Upit)e^\=p'(t)e"f^ +ip(t)e"f^4>'(t). 

Inasmuch as p'(t) and $'(t) are piecewise continuous on the interval a < t 

< b, we can now use expressions  

f'iz) fb p'it) ic But p(b)=p(a) and $(b) - $(a)=Ac arg f(z). 

Hence 

f dz=iAcargf(z). Jc f(z) 

Another way to evaluate integral is to use Cauchy's residue theorem. To 

be specific, we observe that the integrand f '(z)/f(z) is analytic inside and 

on C except at the points inside C at which the zeros and poles of f occur. 

If f has a zero of order m0 at z0. 

f(z)=(z - z0)m0g(z), where g(z) is analytic and nonzero at z0. Hence 

f '(z0)=m0(z - z0)m0-1g(z) + (z - z0)m0g'(z), 

or - m° + g'(z) fiz) z-zo giz)' 

Since g'(z)/g(z) is analytic at z0, it has a Taylor series representation 

about that point; and so equation tells us that f '(z)/f(z) has a simple pole 

at z0, with residue m0. If, on the other hand, f has a pole of order mp at 

z0 f(z)=(z - z0)~mp<P(z), 

where $(z) is analytic and nonzero at z0. Because expression has the 

same form as expression, with the positive integer m0 in equation 

replaced by -mp,it is clear from equation that f '(z)/f(z) has a simple pole 

at zo, with residue -mp. Applying the residue theorem, then, we find that 

[ dz=2ni(Z - P). Jc f(z) 

The conclusion in the theorem now follows by equating the right-hand 

sides of equations. 

EXAMPLE. The only singularity of the function 1/Z2 is a pole of order 2 

at the origin, and there are no zeros in the finite plane. In particular, this 

function is analytic and nonzero on the unit circle z=elQ (0 < Q < 2n). If 

we let C denote that positively oriented circle, our theorem tells us that 
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AcarB(?)=-2- 

That is, the image T of C under the transformation w=1/Z2 winds around 

the origin w=0 twice in the clockwise direction. This can be verified 

directly by noting that T has the parametric representation w=e~l2Q(0 < 

Q < 2n). 

11.9 ROUCHE'S THEOREM 

 

The main result in this section is known as Rouche's theorem and is a 

consequence of the argument principle, It can be useful in locating 

regions of the complex plane in which a given analytic function has 

zeros. 

Theorem. Let C denote a simple closed contour, and suppose that 

two functions f(z) and g(z) are analytic inside and on C; 

\f(z)\ > |g(z) | at each point on C. 

Then f(z) and f(z) + g(z) have the same number of zeros, counting 

multiplicities, inside C. 

The orientation of C in the statement of the theorem is evidently 

immaterial. Thus, in the proof here, we may assume that the orientation 

is positive. We begin with the observation that neither the function f(z) 

nor the sum f(z) + g(z) has a zero on C, since 

\f(z)\> \g(z)|>0 and \f(z) + g(z)\>\\f(z)\-\g(z)\\ > 0 

when z is on C. 

If Zf and Zf+g denote the number of zeros, counting multiplicities, of 

f(z) and f(z) + g(z), respectively, inside C,  

and this means that under the transformation w=F(z), the image of C lies 

in the open disk | w - 11 < 1. That image does not, then, enclose the 

origin w=0. Hence AC arg F(z)=0 and, since equation reduces to 

Zf+g=Zf, Rouche's theorem is proved. 
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EXAMPLE . In order to determine the number of roots of the equation 

z7 - 4z3 + z - 1=0 

inside the circle |z|=1, write 

f(z)=-4z3 and g(z)=z7 + z — 1. 

Then observe that |f (z)|=4|z|3=4 and |g(z)| < |z|7 + |z| + 1=3 when |z|=1. 

The conditions in Rouche's theorem are thus satisfied. Consequently, 

since f(z) has three zeros, counting multiplicities, inside the circle |z|=1, 

so does f(z) + g(z). That is, equation has three roots there. 

EXAMPLE  Rouche's theorem can be used to give another proof of the 

fundamental theorem of algebra To give the detals here, we consider a 

polynomial 

P(z)=ao + a1z + a2z2 + + anzn (an=0) 

of degree n (n > 1) and show that it has n zeros, counting multiplicities. 

We write 

f(z)=anzn, g(z)=a0 + a1 z + a2z2 + + an-1zn 1 

and let z be any point on a circle |z|=R, where R > 1. When such a point 

is taken, we see that 

lf(z)l=lanlRn. 

Also, 

|g(z)| < |aol + |ai|R + MR2 + ■ ■- + |an-l|Rn-1. 

Consequently, since R > 1, 

|^(z)I < |a0|Rn-1 + N|Rn—1 + |a2|Rn-1 +• • • + K—1|Rn—^ 

and it follows that 

|g(z)| |a0| + |a1 | + |a2| + ''' + |an-1| , 

  <   < 1 

\f(z)\ " MR 

file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2011.docx%23bookmark490
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if, in addition to being greater than unity, 

D |a0| + |a1| + |a2| + ''' + |an-1| 

R >  — • 

|an | 

That is, lf(z)l > |^(z) | when R > 1 and inequality is satisfied. Rouche's 

theorem then tells us that f(z) and f(z) + g(z) have the same number of 

zeros, namely n, inside C. Hence we may conclude that P(z) has 

precisely n zeros, counting multiplicities, in the plane. 

Note how Liouville's theorem in only ensured the existence of at least 

one zero of a polynomial; but Rouche's theorem actually ensures the 

existence of  n zeros, counting multiplicities. 

Check your Progress-1 

Discuss Applications Of Residues   

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Argument Principle  

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

11.9 LET US SUM UP 

In this unit we have discussed the definition and example of Applications 

Of Residues, Evaluation Of Improper Integrals, Improper Integrals From 

Fourier Analysis, Jordan's Lemma, Integration Along A Branch Cut, 

Definite Integrals Involving Sines And Cosines, Argument Principle, 

Rouche's Theorem 
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11.10 KEYWORDS 

Applications Of Residues  We turn now to some important applications 

of the theory of residues, which was developed 

Evaluation Of Improper Integrals In calculus, the improper integral of a 

continuous function f(x) over the semiinfinite interval 0 < x < to is 

defined by means of the equation 

Improper Integrals From Fourier Analysis Residue theory can be useful 

in evaluating convergent improper integrals 

Jordan's Lemma  In the evaluation of integrals of the type treated, it is 

sometimes necessary to use Jordan's lemma * which is stated just below 

as a theorem. 

Integration Along A Branch Cut  Cauchy's residue theorem can be useful 

in evaluating a real integral when part of the path of integration of the 

function f(z) to which the theorem is applied lies along a branch cut of 

that function. 

Definite Integrals Involving Sines And Cosines  The method of residues 

is also useful in evaluating certain definite integrals 

Argument Principle  The function f is said to be meromorphic in a 

domain D if it is analytic throughout D except for poles 

Rouche's Theorem  The main result in this section is known as Rouche's 

theorem and is a consequence of the argument principle, It can be useful 

in locating regions of the complex plane in which a given analytic 

function has zeros 

 

11.11 QUESTIONS FOR REVIEW 

Explain Applications Of Residues 

Explain Argument Principle 
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11.12 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Applications Of Residues   (answer for Check your Progress-1 

Q) 

Argument Principle   (answer for Check your Progress-1 

Q) 

   

11.13 REFERENCES 

 Introduction To Complex Analysis 

 Application Of Complex Analysis  

 Variables of Complex Analysis  

 Basic of Complex Analysis 



 

112 

 

UNIT-12 : MAPPING BY 

ELEMENTARY 

FUNCTIONS…LINEAR 

TRANSFORMATIONS  

STRUCTURE 

12.0 Objectives 

12.1 Introduction 

12.2 Mapping By Elementary Functions…Linear Transformations 

12.3 The Transformation 

12.4 Linear Fractional Transformations 

12.5 Square Roots Of Polynomials 

12.6 Riemann Surfaces 

12.7 Let Us Sum Up   

12.8 Keywords   

12.9 Questions For Review   

12.10 Answers To Check Your Progress 

12.11 References  

12.0 OBJECTIVES 

 

After studying this unit, you should be able to: 

 

Learn, Understand about Mapping By Elementary Functions 

Linear Transformations 

The Transformation 

Linear Fractional Transformations 
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Square Roots Of Polynomials 

Riemann Surfaces 

12.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis .  

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Mapping By Elementary Functions, Linear Transformations, The 

Transformation, Linear Fractional Transformations, Square Roots Of 

Polynomials, Riemann surfaces. 

12.2 MAPPING BY ELEMENTARY 

FUNCTIONS 

The geometric interpretation of a function of a complex variable as a 

mapping, or transformation the nature of such a function can be 

displayed graphically, to some extent, by the  manner in which it maps 

certain curves and regions. 

In this chapter, we shall see further examples of how various curves and 

regions are mapped by elementary analytic functions.  

LINEAR TRANSFORMATIONS 

To study the mapping 

w=Az, 

where A is a nonzero complex constant and z=0, we write A and z in 

exponential form: 

A=aeia, z=rew. Then w=(ar)ei(a+e), 

and we see from equation that transformation expands or contracts the 

radius vector representing z by the factor a and rotates it through the 

angle a about the origin. The image of a given region is, therefore, 

geometrically similar to that region.  
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w=z + B, 

where B is any complex constant, is a translation by means of the vector 

representing B. That is, if 

w=u + iv, z=x + iy, and B=b\ + ib2, then the image of any point (x,y) in 

the z plane is the point 

(u, v)=(x + b\, y + b2) 

in the w plane. Since each point in any given region of the z plane is 

mapped into the w plane in this manner, the image region is 

geometrically congruent to the original one. 

The general (nonconstant) linear transformation 

w=Az + B (A=0) 

is a composition of the transformations 

Z=Az (A=0) and w=Z + B. 

When z=0, it is evidently an expansion or contraction and a rotation, 

followed by a translation. 

EXAMPLE. The mapping 

w=(1 + i)z + 2 

transforms the rectangular region in the z=(x,y) plane into the rectangular 

region shown in the w=(u,v) plane there. This is seen by expressing it as 

a composition of the transformations 

Z=(1 + i)z and w=Z + 2. 

and z=rexp(i6), one can put the first of transformations in the form 

This first transformation thus expands the radius vector for a nonzero 

point z by the factor \fl and rotates it counterclockwise 7t/4 radians about 

the origin. The second of transformations is, of course, a translation two 

units to the right. 

12.3 THE TRANSFORMATION 
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 w=1/z 

The equation 

1 

w=- z 

establishes a one to one correspondence between the nonzero points of 

the z and the w planes. Since cT=\z\2, the mapping can be described by 

means of the successive transformations 

The first of these transformations is an inversion with respect to the unit 

circle |z|=1. That is, the image of a nonzero point z is the point Z with the 

properties 

1 

\Z\=— and argZ=argz. 

|z| 

Thus the points exterior to the circle |z|=1 are mapped onto the nonzero 

points interior and conversely. Any point on the circle is mapped onto 

itself. The second of transformations is simply a reflection in the real 

axis. 

If we write transformation as 

T(z)=- (z± 0), 

z 

we can define T at the origin and at the point at infinity so as to be 

continuous on the extended complex plane.  

lim T(z)=oo since lim =lim z=0 

W Z-+0 z^o T(z) z^O 

and 

lim T(z)=0 since lim T (- |=lim z=0. 

z^~ z^0 \zj z^0 
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In order to make T continuous on the extended plane, then, we write 

T( 0)=oo, T( oo)=0, and T(z)=- 

z 

for the remaining values of z. More precisely, the first of limits  that the 

limit 

lim T(z)=T(z0), 

z^z0 

which is clearly true when z0=0 and when z0 =rc>, is also true for those 

two values of z0. The fact that T is continuous everywhere in the 

extended plane is now a consequence of limit Because of this continuity, 

when the point at infinity is involved in any discussion of the function 

1/z, we tacitly assume that T (z) is intended. 

12.4 LINEAR FRACTIONAL 

TRANSFORMATIONS 

 

The transformation 

w=" — (ad — be f 0), cz + d 

where a, b, c, and d are complex constants, is called a linear fractional 

transformation, or Mobius transformation. Observe that equation can be 

written in the form 

Azw + Bz + Cw + D=0 (AD - BC=0); 

and, conversely, any equation of type can be put in the form. Since this 

alternative form is linear in z and linear in w, another name for a linear 

fractional transformation is bilinear transformation. 

When c=0, the condition ad — bc=0 with equation becomes ad=0; and 

we see that the transformation reduces to a nonconstant linear function. 

When c=0, equation can be written 

a bc ad 1 
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w=—|    (ad — bc f 0). c c cz + d 

So, once again, the condition ad — bc=0 ensures that we do not have a 

constant function. The transformation w=1 /z is evidently a special case 

of transformation when c=0. 

Equation reveals that when c=0, a linear fractional transformation is a 

composition of the mappings. 

1 a bc ad 

Z=cz + d, W=—, w=—| W (ad — bc f 0). Z c c 

It thus follows that, regardless of whether c is zero or nonzero, any linear 

fractional transformation transforms circles and lines into circles and 

lines because these special linear fractional transformations do Solving 

equation for z, we find that 

dw b z =  (ad — bc f 0). 

When a given point w is the image of some point z under transformation 

the point z is retrieved by means of equation. If c=0, so that a and d are 

both nonzero, each point in the w plane is evidently the image of one and 

only one point in the z plane. The same is true if c=0, except when w=a/c 

since the denominator in equation vanishes if w has that value. We can, 

however, enlarge the domain of definition of transformation in order to 

define a linear fractional transformation T on the extended z plane such 

that the point w=a/c is the image of z=ro when c=0. We first write 

T(z)=~ — (ad — be f 0). cz + d 

We then write 

T (<x>)=ro if c=0 and T(oo)=- and Ty—j=oo if c f 0. 

When its domain of definition is enlarged in this way, the linear 

fractional transformation is a one to one mapping of the extended z plane 

onto the extended w plane. That is, T(z\)=T(Z2) whenever Z1=Z2; and, for 

each point w in the second plane, there is a point z in the first one such 

that T(z)=w. Hence, associated with the transformation T, there is an 

inverse transformation T-1, which is defined on the extended w plane as 

follows: 
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T-1(w)=z if and only if T(z)=w. 

From equation, we see that 

1 —dw+b 

T (w)=  (ad — be f 0). 

cw — a 

Evidently, T-1 is itself a linear fractional transformation, where 

T—1(^) =ro if c=0 and 

r_1(-)=oo and T~l(oo) =-- if cf 0. 

If T and S are two linear fractional transformations, then so is the 

composition S[T(z)]. This can be verified by combining expressions of 

the type. Note that, in particular, T—1 [T(z)]=z for each point z in the 

extended plane.  

There is always a linear fractional transformation that maps three given 

distinct points Z1, Z2, and Z3 onto three specified distinct points wi, W2, 

and W3, respectively. Verification of this will appear in Sec. 94, where 

the image w of a point z under such a transformation is given implicitly 

in terms of z. We illustrate here a more direct approach to finding the 

desired transformation. 

EXAMPLE . Let us find the special case of transformation that maps the 

points 

Z1=-1, Z2=0, and Z3=1 

onto the points 

wi=—i, W2=1, and W3=i. 

Since 1 is the image of 0, expression tells us that 1=b/d, or d=b. Thus 

w=——--r [b(a-c)^ 0], cz + b 

Then, since —1 and 1 are transformed into —i and i, respectively, it 

follows that 

ic — ib=—a + b and ic + ib=a + b. 
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Adding corresponding sides of these equations, we find that c=—ib ;           

and subtrac- tion reveals that a=ib. Consequently, 

ibz + b b(iz + 1) 

—ibz+b b(—iz + 1) ' 

We can cancel out the nonzero number b in this last fraction and write 

iz + 1 w=—: 7- —iz + 1 

This is, of course, the same as u> = i + z 

which is obtained by assigning the value i to the arbitrary number b. 

EXAMPLE. Suppose that the points 

Z1=1, Z2=0, and z3=-1 

are to be mapped onto 

W1=i, W2 =<x>, and W3=1. 

Since W2=ro corresponds to Z2=0,  c=0 and d=0 in equation Hence 

w=~ (be ^ 0). 

cz 

Then, because 1 is to be mapped onto i and —1 onto 1, we have the 

relations 

ic=a + b, —c=—a + b ; 

and it follows that 

2a=(1 + i)c, 2b=(i — 1)c. 

Finally, if we multiply numerator and denominator in the quotient by 2, 

make these substitutions for 2a and 2b, and then cancel out the nonzero 

number c, we arrive at 

(i + 1)z + (i — 1) 

(14) w = 2z 

AN IMPLICIT FORM 
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The equation 

(w - U'l)(U>2 - U'3) _ (z -Zl)(ZZ -Z3) 

(W - W3)(W2 ~ Wl) (Z ~ Z3)(Z2 -til) defines (implicitly) a linear 

fractional transformation that maps distinct points Z1, Z2, and Z3 in the 

finite z plane onto distinct points w1, W2, and W3, respectively, in the 

finite w plane.6 To verify this, we write equation as 

(z — Z3)(w — W1)(Z2 — Z1)(W2 — W3)=(z — Z\)(w — W3)(Z2 — 

Z3)(w2 — W1). 

If z=Z1, the right-hand side of equation is zero; and it follows that w=w1. 

Similarly, if z=z3, the left-hand side is zero and, consequently, w=W3. If 

z=Z2, we have the linear equation 

(w — w1)(w2 — w3)=(w — w3 )(w2 — w1), 

whose unique solution is w=w2. One can see that the mapping defined 

by equation is actually a linear fractional transformation by expanding 

the products in equation and writing the result in the form  

Azw + Bz + Cw + D=0. 

The condition AD — BC=0, which is needed with equation is clearly 

satisfied since, as just demonstrated, equation does not define a constant 

function fractional transformation mapping the points Z1, Z2, and z3 onto 

w1, w2, and w3, respectively. 

 

EXAMPLE. The transformation found in Example required that 

Z1=— 1, Z2=0, Z3=1 and W1=—i, W2=1, W3=i. 

Using equation to write 

(w + i)(l - i) _ (z + 1)(0 - 1) 

(w - 2)(1 + 2) (z - 1)(0 + 1) and then solving for w in terms of z, we 

arrive at the transformation 
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i — z 

w = , 

i + z 

found earlier. 

If equation is modified properly, it can also be used when the point at 

infinity is one of the prescribed points in either the (extended) z or w 

plane. Suppose, for instance, that Z1=to. Since any linear fractional 

transformation is continuous on the extended plane, we need only replace 

Z1 on the right-hand side of equation by 1/Z1, clear fractions, and let Z1 

tend to zero: 

(z — 1/Z1)(Z2 — z3) Z1 (z1z — 1)(Z2 — z3) Z2 — z3 

lim  • —=lim   = . 

Z1^0 (z — z3)(Z2 — 1/Z1) Z1 Z1^0 (z — z3)(z1z2 — 1) z — z3 

The desired modification of equation is, then,  

(W - W\)(W2 ~ U'3) _ Z2 ~ Z3 (W - W3)(W2 ~ W\) Z~Z3~ 

Note that this modification is obtained formally by simply deleting the 

factors involving Z1 in equation . It is easy to check that the same formal 

approach applies when any of the other prescribed points is to. 

EXAMPLE The prescribed points were Z1=1, Z2=0, z3=—1 and W1=i, 

W2=to, W3=1. 

In this case, we use the modification 

w - W\ _ (Z - Zl)(Z2 - Z3) 

W - U'3 (z - Z3)(Z2 - Z1) of equation (1), which tells us that 

w - i (z — 1)(0 + 1) w - 1=U + 1)(0 — 1)' 

Solving here for w, we have the transformation obtained earlier: 

(i + 1)z + (i — 1) w 2z 

12.5 SQUARE ROOTS OF POLYNOMIALS 
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We now consider some mappings that are compositions of polynomials 

and square roots. 

EXAMPLE. Branches of the double-valued function (z — z0)1/2 can be 

obtained by noting that it is a composition of the translation Z=z — z0 

with the double-valued function Z1/2. Each branch of Z1/2 yields a branch 

of (z — zo)1/2. More precisely, when Z=Rel6, branches of Z1/2 are 

Z1/2=\//?exp — (R > 0,a < 9 < a + 2jt), according to equation (8) in Sec. 

97. Hence if we write 

R=|z — Z01, θ=Arg (z — Z0), and 6=arg(z — Z0), two branches of (z 

— z0 )1/2 are 

Go(z)=\/rR exp(R > 0, — n < θ < n) and i0 

g0(z)=</Rexp — (R > 0, 0 < 6 < 2n). 

The branch of Z1/2 that was used in writing G0(z) is defined at all points 

in the Z plane except for the origin and points on the ray Arg Z=n. The 

transformation w=G0(z) is, therefore, a one to one mapping of the 

domain 

|z — z01 > 0, —n< Arg (z — z0) < n 

onto the right half Re w > 0 of the w plane The transformation w=g0(z) 

maps the domain 

|z — z01 > 0, 0 < arg(z — z0) < 2n in a one to one manner onto the 

upper half plane Im w > 0 

12.6 RIEMANN SURFACES 

The remaining two sections of this chapter constitute a brief introduction 

to the concept of a mapping defined on a Riemann surface, which is a 

generalization of the complex plane consisting of more than one sheet. 

The theory rests on the fact that at each point on such a surface only one 

value of a given multiple-valued function is assigned. The material in 

these two sections will not be used in the chapters to follow, and the 

reader may skip to without disruption. Once a Riemann surface is 

devised for a given function, the function is single valued on the surface 
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and the theory of single-valued functions applies there. Complexities 

arising because the function is multiple-valued are thus relieved by a 

geometric device. However, the description of those surfaces and the 

arrangement of proper connections between the sheets can become quite 

involved. We limit our attention to fairly simple examples and begin with 

a surface for log z. 

EXAMPLE. Corresponding to each nonzero number z, the multiple 

valued function 

log z=ln r + iO  

has infinitely many values. To describe log z as a single-valued function, 

we replace the z plane, with the origin deleted, by a surface on which a 

new point is located whenever the argument of the number z is increased 

or decreased by 2n, or an integral multiple of 2n. 

We treat the z plane, with the origin deleted, as a thin sheet R0 which is 

cut along the positive half of the real axis. On that sheet, let Q range 

from 0 to 2n. Let a second sheet R1 be cut in the same way and placed in 

front of the sheet R0 . The lower edge of the slit in R0 is then joined to 

the upper edge of the slit in R1. On R1, the angle Q ranges from 2n to 

4n; so, when z is represented by a point on R1, the imaginary component 

of log z ranges from 2n to 4n. 

A sheet R2 is then cut in the same way and placed in front of R1. The 

lower edge of the slit in R1 is joined to the upper edge of the slit in this 

new sheet, and similarly for sheets R3, R4,... .A sheet R—1 on which Q 

varies from 0 to —2n is cut and placed behind R0, with the lower edge of 

its slit connected to the upper edge of the slit in R0; the sheets R—2, R—

3,... are constructed in like manner. The coordinates r and Q of a point on 

any sheet can be considered as polar coordinates of the projection of the 

point onto the original z plane, the angular coordinate Q being restricted 

to a definite range of 2n radians on each sheet. 

Consider any continuous curve on this connected surface of infinitely 

many sheets. As a point z describes that curve, the values of log z vary 

continuously since Q, in addition to r, varies continuously; and log z now 

assumes just one value corresponding to each point on the curve. For 
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example, as the point makes a complete cycle around the origin on the 

sheet R0 over the path indicated the angle changes from 0 to 2n. As it 

moves across the ray Q=2n, the point passes to the sheet R1 of the 

surface. As the point completes a cycle in R1, the angle Q varies from 2n 

to 4n; and as it crosses the ray Q=4n, the point passes to the sheet R2. 

The surface described here is a Riemann surface for logz. It is a 

connected surface of infinitely many sheets, arranged so that log z is a 

single-valued function of points on it. 

The transformation w=log z maps the whole Riemann surface in a one to 

one manner onto the entire w plane. The image of the sheet R0 is the 

strip 0 < v < 2n As a point z moves onto the sheet R1 its image w moves 

upward across the line v=2n, as indicated. 

Note that logz, defined on the sheet R1, represents the analytic 

continuation of the single-valued analytic function 

f(z)=ln r + id (0 < d < 2n) 

upward across the positive real axis. In this sense, log z is not only a 

single-valued function of all points z on the Riemann surface but also an 

analytic function at all points there. 

The sheets could, of course, be cut along the negative real axis or along 

any other ray from the origin, and properly joined along the slits, to form 

other Riemann surfaces for log z. 

EXAMPLE . Corresponding to each point in the z plane other than the 

origin, the square root function 

z1'2=2 

has two values. A Riemann surface for Z1/2 is obtained by replacing the z 

plane with a surface made up of two sheets R0 and R,, each cut along the 

positive real axis and with R, placed in front of R0. The lower edge of 

the slit in R0 is joined to the upper edge of the slit in R,, and the lower 

edge of the slit in R, is joined to the upper edge of the slit in R0. 

As a point z starts from the upper edge of the slit in R0 and describes a 

continuous circuit around the origin in the counterclockwise direction  
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the angle 0 increases from 0 to 2n. The point then passes from the sheet 

Ro to the sheet Ri, where 0 increases from 2n to 4n. As the point moves 

still further, it passes back to the sheet R0, where the values of 0 can vary 

from 4n to 6n or from 0 to 2n, a choice that does not affect the value of 

Z1/2, etc. Note that the value of Z1/2 at a point where the circuit passes 

from the sheet R0 to the sheet R1 is different from the value of Z1/2 at a 

point where the circuit passes from the sheet R1 to the sheet R0. 

We have thus constructed a Riemann surface on which Z1/2 is single-

valued for each nonzero z. In that construction, the edges of the sheets 

R0 and R1 are joined in pairs in such a way that the resulting surface is 

closed and connected. The points where two of the edges are joined are 

distinct from the points where the other two edges are joined. Thus it is 

physically impossible to build a model of that Riemann surface. In 

visualiZ1ng a Riemann surface, it is important to understand how we are 

to proceed when we arrive at an edge of a slit. 

The origin is a special point on this Riemann surface. It is common to 

both sheets, and a curve around the origin on the surface must wind 

around it twice in order to be a closed curve. A point of this kind on a 

Riemann surface is called a branch point. 

The image of the sheet R0 under the transformation w=Z1/2 is the upper 

half of the w plane since the argument of w is 0/2 on R0, where 0 < 0/2 < 

n. Likewise, the image of the sheet R1 is the lower half of the w plane. 

As defined on either sheet, the function is the analytic continuation, 

across the cut, of the function defined on the other sheet. In this respect, 

the single-valued function Z1/2 of points on the Riemann surface is 

analytic at all points except the origin. 

Check your Progress-1 

Discuss Mapping By Elementary Functions 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Riemann Surfaces  
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_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

12.7 LET US SUM UP 

In this unit we have discussed the definition and example of Mapping By 

Elementary Functions, Linear Transformations, The Transformation, 

Linear Fractional Transformations, Square Roots Of Polynomials, 

Riemann Surfaces 

12.8 KEYWORDS 

Mapping by Elementary Functions  Complex Analysis, Basic of 

Complex Analysis, Complex Functions & Variables, Complex Variables, 

Introduction To Complex Analysis, Application Of Complex Analysis & 

Variables, Complex Functions, Complex Numbers & Analysis, The 

Complex Number System 

 

Linear Transformations  The geometric interpretation of a function of a 

complex variable as a mapping, or transformation the nature of such a 

function can be displayed graphically, to some extent, by the  manner in 

which it maps certain curves and regions. 

 

The Transformation  w=1/z The equation 

 

Linear Fractional Transformations  The transformation w=" — (ad — be 

f 0), 

 

Square Roots Of Polynomials   We consider some mappings that are 

compositions of polynomials and square roots. 
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Riemann Surfaces  The remaining two sections of this chapter constitute 

a brief introduction to the concept of a mapping defined on a Riemann 

surface, which is a generalization of the complex plane consisting of 

more than one sheet. 

 

12.9 QUESTIONS FOR REVIEW 

Explain Mapping by Elementary Functions 

Explain Riemann Surfaces 

12.10 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Mapping by Elementary Functions (answer for Check your Progress-1 

Q) 

Riemann Surfaces   (answer for Check your Progress-1 

Q) 

   

12.11 REFERENCES 

 Complex Numbers & Analysis 

 The Complex Number System 

 Complex Analysis 

 Complex Variables 

 Application Of Complex Analysis & Variables 
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UNIT-13 : CONFORMAL MAPPING  

 

STRUCTURE 

13.0 Objectives 

13.1 Introduction 

13.2 Conformal Mapping  

13.3 Preservation Of Angles 

13.4 Scale Factors 

13.5 Local Inverses 

13.6 Harmonic Conjugates 

13.7 Transformations Of Harmonic Functions 

13.8 Transformations Of Boundary Conditions 

13.9 Two-Dimensional Fluid Flow 

13.10 The Stream Function 

13.11 Flows Around A Corner And Around A Cylinder 

13.12 Let Us Sum Up   

13.13 Keywords   

13.14 Questions For Review   

13.15 Answers To Check Your Progress 

13.16 References  

13.0 OBJECTIVES 

 

After studying this unit, you should be able to: 
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Learn, Understand about Conformal Mapping  

Preservation Of Angles 

Scale Factors 

Local Inverses 

Harmonic Conjugates 

Transformations Of Harmonic Functions 

Transformations Of Boundary Conditions 

Two-Dimensional Fluid Flow 

The Stream Function 

Flows Around A Corner And Around A Cylinder 

13.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis .  

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Conformal Mapping, Preservation Of Angles, Scale Factors, Local 

Inverses, Harmonic Conjugates, Transformations Of Harmonic 

Functions, Transformations Of Boundary Conditions, Two-Dimensional 

Fluid Flow, The Stream Function, Flows Around A Corner And Around 

A Cylinder 

13.2 CONFORMAL MAPPING 

In this chapter, we introduce and develop the concept of a conformal 

mapping, with emphasis on connections between such mappings and 

harmonic functions  
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Notes Notes 
13.3 PRESERVATION OF ANGLES 

 

Let C be a smooth arc represented by the equation 

z=z(t) (a < t < b), and let f(z) be a function defined at all points z on C. 

The equation 

w=f [z(t)] (a < t < b) 

is a parametric representation of the image Y of C under the 

transformation w=f(z). 

Suppose that C passes through a point z0=z(t0) (a < t0 < b) at which f is 

analytic and that f '(z0)=0. According to the chain rule verified  

If w(t)=f [z(t)], then 

w'(t0)=f '[z(t0)]z'(t0); and this means that  

arg w'(t0)=arg f '[zt)] + arg z'(t0). 

Statement is useful in relating the directions of C and Y at the points zo 

and wo=f(za), respectively. 

To be specific, let 60 denote a value of argz'(t0) and let $0 be a value of 

arg w'(t0). According to the discussion of unit tangent vectors T near the 

end of the number 60 is the angle of inclination of a directed line tangent 

to C at Z0 and 60 is the angle of inclination of a directed line tangent to 

Y at the point W0=f(z0). In view of statement, there is a value ^0 of arg f 

'[z(t0)] such that $0=f0 + 60. 

Thus $0 — 60=^0, and we find that the angles $0 and 60 differ by the 

angle of rotation 

f0=arg f '(z0). 

Now let C1 and C2 be two smooth arcs passing through z0 , and let 61 

and 62 be angles of inclination of directed lines tangent to C1 and C2 , 

respectively, at z0 .   We know from the preceding paragraph that the 

quantities 
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$1=f0 + 61 and $2=f0 + 62 

are angles of inclination of directed lines tangent to the image curves Y1 

and Y 2, respectively, at the point W0=f(z0). Thus $2 — $1=62 — 61; 

that is, the angle $2 — $1 from Y1 to Y2 is the same in magnitude and 

sense as the angle 62 — 61 from C1 to C2. 

Because of this angle-preserving property, a transformation w=f(z) is 

said to be conformal at a point Z0 if f is analytic there and f '(z0)=0. Such 

a transformation is actually conformal at each point in some 

neighborhood of Z0- For it must be analytic in a neighborhood of Z0 and 

since its derivative f' is continuous in that neighborhood is also a 

neighborhood of Z0 throughout which f '(z)=0. 

A transformation w=f(z), defined on a domain D, is referred to as a 

conformal transformation, or conformal mapping, when it is conformal at 

each point in D. That is, the mapping is conformal in D if f is analytic in 

D and its derivative f' has no zeros there. Each of the elementary 

functions can be used to define a transformation that is conformal in 

some domain. 

EXAMPLE. The mapping w=ez is conformal throughout the entire z 

plane since (ez)'=ez=0 for each z. Consider any two lines x=C1 and 

y=C2 in the z plane, the first directed upward and the second directed to 

the right. According to their images under the mapping w=ez are a 

positively oriented circle centered at the origin and a ray from the origin, 

respectively is a right angle in the negative direction, and the same is true 

of the angle between the circle and the ray at the corresponding point in 

the w plane. The conformality of the mapping w=ez is also illustrated  

EXAMPLE. Consider two smooth arcs which are level curves u(x,y)=C1 

and v(x,y)=C2 of the real and imaginary components, respectively, of a 

function 

f(z)=u(x, y) + iv(x, y), 

and suppose that they intersect at a point z0 where f is analytic and f 

'(z0)=0. The transformation w=f(z) is conformal at z0 and maps these 

arcs into the lines u=C1 and v=C2, which are orthogonal at the point 
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Notes Notes 
w0=f(z0). According to our theory, then, the arcs must be orthogonal at 

z0. This has already been verified 

A mapping that preserves the magnitude of the angle between two 

smooth arcs but not necessarily the sense is called an isogonal mapping. 

EXAMPLE . The transformation w=z, which is a reflection in the real 

axis, is isogonal but not conformal. If it is followed by a conformal 

transformation, the resulting transformation w=f(z) is also isogonal but 

not conformal. 

Suppose that f is not a constant function and is analytic at a point z0 . If, 

in addition, f '(z0)=0, then z0 is called a critical point of the 

transformation 

w=f(z). 

EXAMPLE . The point zo=0 is a critical point of the transformation 

w=1 + Z2, 

which is a composition of the mappings 

Z=Z2 and w=1 + Z. 

A ray Q=a from the point Z0=0 is evidently mapped onto the ray from 

the point W0=1 whose angle of inclination is 2a, and the angle between 

any two rays drawn from z0=0 is doubled by the transformation. 

More generally, it can be shown that if z0 is a critical point of a 

transformation w=f(z), there is an integer m (m > 2) such that the angle 

between any two smooth arcs passing through z0 is multiplied by m 

under that transformation. The integer m is the smallest positive integer 

such that f(m)(zo)=0. Verification of these facts is left to the exercises. 

13.4 SCALE FACTORS 

Another property of a transformation w=f(z) that is conformal at a point 

z0 is obtained by considering the modulus of f '(zo). From the definition 

of derivative and a property of limits involving moduli that was derived  
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Now |z — zo | is the length of a line segment joining zo and z, and If(z) 

— f (zo) | is the length of the line segment joining the points f(zo) and 

f(z) in the w plane. Evidently, then, if z is near the point z0 , the ratio 

l/U)-/Uo)l |z -zol 

of the two lengths is approximately the number |f'(zo)|. Note that |f '(zo)| 

represents an expansion if it is greater than unity and a contraction if it is 

less than unity. 

Although the angle of rotation arg f' (z) and the scale factor If '(z)| vary, 

in general, from point to point, it follows from the continuity of f'  that 

their values are approximately arg f '(zo) and |f '(zo)| at points z near zo. 

Hence the image of a small region in a neighborhood of zo conforms to 

the original region in the sense that it has approximately the same shape. 

A large region may, however, be transformed into a region that bears no 

resemblance to the original one. 

EXAMPLE. When f(z)=Z2, the transformation 

w=f(z)=x2 — y2 + i2xy  

is conformal at the point z=1 + i, where the half lines 

y=x (x > 0) and x=1 (y > 0) 

intersect. We denote those half lines by Ci and C2 with positive sense 

upward. Observe that the angle from C1 to C2 is n/4 at their point of 

intersection. Since the image of a point z=(x,y) is a point in the w plane 

whose rectangular coordinates are 

u=x2 — y2 and v=2xy, the half line C1 is transformed into the curve Y1 

with parametric representation 

u=0, v=2x2 (0 < x < to). 

Thus Y1 is the upper half v > 0 of the v axis. The half line C2 is 

transformed into the curve Y2 represented by the equations 

u=1 — y2, v=2y (0 < y < to). 
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Hence Y2 is the upper half of the parabola v2=—4(u — 1). Note that in 

each case, the positive sense of the image curve is upward. 

If u and v are the variables in representation for the image curve Y2 , 

then 

dv dv/dy 2 2    du du/dy —2y v 

In particular, dv/du=—1 when v=2. Consequently, the angle from the 

image curve Y1 to the image curve Y2 at the point w=f(1 + i)=2i is n/4, 

as required by the conformality of the mapping at z=1 + i. The angle of 

rotation n/4 at the point z=1 + i is, of course, a value of 

arg[/ (1 +2)]=arg[2(l +/)]=— + 2nn (n=0, ±1, ±2 ). 

The scale factor at that point is the number 

|/'(1 + /)|=|2(1 + /)|=2V2.  

To illustrate how the angle of rotation and the scale factor can change 

from point to point, we note that they are 0 and 2, respectively, at the 

point z=1 since f '(1)=2. where the curves C2 and T2 are the ones just 

discussed and where the nonnegative x axis C3 is transformed into the 

nonnegative u axis T3. 

13.5 LOCAL INVERSES 

A transformation w=f(z) that is conformal at a point Z0 has a local 

inverse there. That is, if W0=f(z0), then there exists a unique 

transformation z=g(w), which is defined and analytic in a neighborhood 

N of W0, such that g(w0)=z0 and f [g(w)]=w for all points w in N. The 

derivative of g(w) is, moreover, 

g'(w) = . 

W f'(z) 

We note from expression that the transformation z=g(w) is itself 

conformal at w0. 

Assuming that w=f(z) is, in fact, conformal at z0 , let us verify the 

existence of such an inverse, which is a direct consequence of results in 
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advanced calculus. the conformality of the transformation w=f(z) at z0 

implies that there is some neighborhood of z0 throughout which f is 

analytic. Hence if we write 

z=x + iy, z0=X0 + iy0, and f(z)=u(x,y) + iv(x,y), 

we know that there is a neighborhood of the point (x0, y0) throughout 

which the functions u(x,y) and v(x,y), along with their partial derivatives 

of all orders, are continuous  

Now the pair of equations 

u=u(x,y), v=v(x,y) 

represents a transformation from the neighborhood just mentioned into 

the uv plane. Moreover, the determinant 

which is known as the Jacobian of the transformation, is nonzero at the 

point (x0, y0). For, in view of the Cauchy-Riemann equations ux=vy and 

uy=—vx, one can write J as 

J=(ux)2 + (vx)2=|f'(z)|2; 

and f '(z0)=0 since the transformation w=f(z) is conformal at z0. The 

above continuity conditions on the functions u(x,y) and v(x,y) and their 

derivatives, together with this condition on the Jacobian, are sufficient to 

ensure the existence of a local inverse of transformation at (x0, yo). That 

is, if 

U0=u(x0, y0) and V0=v(x0, y0), then there is a unique continuous 

transformation 

x=x(u, v), y=y(u, v), 

defined on a neighborhood N of the point (u0, V0) and mapping that 

point onto (x0, y0), such that equations hold when equations hold. Also, 

in addition to being continuous, the functions have continuous first-order 

partial derivatives satisfying the equations 

ra 1111 xu=jVy, Xv=-J»y=~Jvx< yv=J"x 

throughout N. 
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If we write w=u + iv and W0=u0 + iv0, as well as 

g(w)=x(u, v) + iy(u, v), 

the transformation z=g(w) is evidently the local inverse of the original 

transformation w=f(z) at z0. Transformations can be written 

u + iv=u(x, y) + iv(x, y) and x + iy=x(u, v) + iy(u, v); 

and these last two equations are the same as 

w=f(z) and z=g(w), 

where g has the desired properties. Equations can be used to show that g 

is analytic in N. Details are left to the exercises, where expression for 

g'(w) is also derived. 

EXAMPLE If f(z)=ez, the transformation w=f(z) is conformal 

everywhere in the z plane and, in particular, at the point z0=2ni. The 

image of this choice of z0 is the point w0=1. When points in the w plane 

are expressed in the form w=p exp(i^), the local inverse at z0 can be 

obtained by writing g(w)=log w, where log w denotes the branch 

logw=lnp + i$ (p > 0,n<6< 3n) 

of the logarithmic function, restricted to any neighborhood of w0 that 

does not contain the origin. Observe that 

g(1)=ln 1 + i 2n=2ni  

and that when w is in the neighborhood, 

f [g(w)]=exp(log w)=w. 

Also 

^ d ^ 1 1 g (W)=— logw=— = dw w exp z 

in accordance with equation  

Note that if the point Z0=0 is chosen, one can use the principal branch 

Log w=ln p + (p > 0, — n < <p < n) 

of the logarithmic function to define g. In this case, g(1)=0. 
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13.6 HARMONIC CONJUGATES 

If a function 

f(z)=u(x, y) + iv(x, y) 

is analytic in a domain D, then the real-valued functions u and v are 

harmonic in that domain. That is, they have continuous partial 

derivatives of the first and second order in D and satisfy Laplace's 

equation there: 

UXX + Uyy=0, Vxx + Vyy=0. 

We had seen earlier that the first-order partial derivatives of u and v 

satisfy the Cauchy-Riemann equations 

Ux=Vy, Uy=Vx ; 

and, as pointed out in Sec. 26, v is called a harmonic conjugate of u. 

Suppose now that u(x,y) is any given harmonic function defined on a 

simply connected domain D. In this section, we show that u(x, y) always 

has a harmonic conjugate v(x,y) in D by deriving an expression for 

v(x,y). 

To accomplish this, we first recall some important facts about line 

integrals in advanced calculus.7 Suppose that P(x,y) and Q(x,y) have 

continuous first-order partial derivatives in a simply connected domain D 

of the xy plane, and let (x0, y0) and (x,y) be any two points in D. If 

Py=Qx everywhere in D, then the line integral 

J P(s,t)ds + Q(s,t)dt 

from (x0, y0) to (x,y) is independent of the contour C that is taken as 

long as the contour lies entirely in D. Furthermore, when the point (x0, 

y0) is kept fixed and (x, y) is allowed to vary throughout D, the integral 

represents a single-valued function 

r (x,y) F(x,y)=I P(s,t)ds + Q(s,t)dt J(x0,y0) 
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of x and y whose first-order partial derivatives are given by the equations 

Fx(x,y)=P(x,y), Fy(x,y)=Q(x,y). 

Note that the value of F is changed by an additive constant when a 

different starting point (x0, y0) is taken. 

Returning to the given harmonic function u(x,y), observe how it follows 

from Laplace's equation uxx + uyy=0 that 

(-uy)y=(ux)x 

everywhere in D. Also, the second-order partial derivatives of u are 

continuous in D; and this means that the first-order partial derivatives of 

-uy and ux are continuous there. Thus, if (x0, y0) is a fixed point in D, 

the function 

r (x,y) v(x,y)=I -ut(s,t)ds + us(s,t)dt (x0,y0) 

is well defined for all (x,y) in D; and, according to equations, 

Vx(x,y)=—uy(x, y), Vy(x,y)=ux(x,y).These are the Cauchy-Riemann 

equations. Since the first-order partial derivatives of u are continuous, it 

is evident from equations that those derivatives of v are also continuous. 

Hence u(x, y) + iv(x, y) is an analytic function in D; and v is, therefore, a 

harmonic conjugate of u. 

The function v defined by equation is, of course, not the only harmonic 

conjugate of u. The function v(x, y) + c, where c is any real constant, is 

also a harmonic conjugate of u.  

EXAMPLE. Consider the function u(x,y)=xy, which is harmonic through 

out the entire xy plane. According to equation, the function 

r (x,y) v(x,y)=I -sds + t dt J (0,0) 

is a harmonic conjugate of u(x, y). The integral here is readily evaluated 

by inspection. It can also be evaluated by integrating first along the 

horizontal path from the point (0, 0) to the point (x, 0) and then along the 

vertical path from (x, 0) to the point (x, y). The result is 

1 2 1 2 
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v(x,y)=--U+-y\ and the corresponding analytic function is 

f(z )=xy-l-(x2 -y2)=-l-Z2. 

13.7 TRANSFORMATIONS OF 

HARMONIC FUNCTIONS 

The problem of finding a function that is harmonic in a specified domain 

and satisfies prescribed conditions on the boundary of the domain is 

prominent in applied mathematics. If the values of the function are 

prescribed along the boundary, the problem is known as a boundary 

value problem of the first kind, or a Dirichlet problem. If the values of 

the normal derivative of the function are prescribed on the boundary, the 

boundary value problem is one of the second kind, or a Neumann 

problem. Modifications and combinations of those types of boundary 

conditions also arise. 

The domains most frequently encountered in the applications are simply 

connected; and, since a function that is harmonic in a simply connected 

domain always has a harmonic conjugate solutions of boundary value 

problems for such domains are the real or imaginary components of 

analytic functions. 

EXAMPLE The function 

T(x,y)=e-y sinx  

satisfies a certain Dirichlet problem for the strip 0 < x < n,y > 0 and 

noted that it represents a solution of a temperature problem. The function 

T(x,y), which is actually harmonic throughout the xy plane, is the real 

component of the entire function 

-ielz=e—y sinx — ie—y cosx. 

It is also the imaginary component of the entire function eiz. 

Sometimes a solution of a given boundary value problem can be 

discovered by identifying it as the real or imaginary component of an 

analytic function. But the success of that procedure depends on the 

simplicity of the problem and on one's familiarity with the real and 
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imaginary components of a variety of analytic functions. The following 

theorem is an important aid. 

Theorem. Suppose that an analytic function 

w=f(z)=u(x,y) + iv(x, y) 

maps a domain Dz in the z plane onto a domain Dw in the w plane. If 

h(u, v) is a harmonic function defined on Dw, then the function 

H(x,y)=h[u(x,y),v(x,y)] is harmonic in Dz. 

We first prove the theorem for the case in which the domain Dw is 

simply connected. that property of Dw ensures that the given harmonic 

function h(u,v) has a harmonic conjugate g(u,v). Hence the function 

<h(w)=h(u, v) + ig(u, v) 

is analytic in Dw. Since the function f(z) is analytic in Dz, the composite 

function &[f(z)] is also analytic in Dz. Consequently, the real part 

h[u(x,y),v(x,y)] of this composition is harmonic in Dz. 

If Dw is not simply connected, we observe that each point w0 in Dw has 

a neighborhood |w — w0| < e lying entirely in Dw. Since that 

neighborhood is simply connected, a function of the type is analytic in it. 

Furthermore, since f is continuous at a point z0 in Dz whose image is w0 

, there is a neighborhood 0Z Z  <8 whose image is contained in the 

neighborhood | w — w0| < e. Hence it follows that the composition <h[f 

(z)] is analytic in the neighborhood 0Z Z < 8, and we may conclude 

that h[u(x, y), v(x, y)] is harmonic there. Finally, since w0 was arbitrarily 

chosen in Dw and since each point in Dz is mapped onto such a point 

under the transformation w=f(z), the function h[u(x, y), v(x, y)] must be 

harmonic throughout Dz. 

The proof of the theorem for the general case in which Dw is not 

necessarily simply connected can also be accomplished directly by 

means of the chain rule for partial derivatives. The computations are, 

however, somewhat involved 
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EXAMPLE . The function h(u,v)=e—v sinu is harmonic in the domain 

Dw consisting of all points in the upper half plane v > 0 transformation is 

w=Z2, we have u(x, y)=x2 — y2 and v(x, y)=2xy; moreover, the domain 

Dz consisting of the points in the first quadrant x > 0, y > 0 of the z plane 

is mapped onto the domain Dw,  

function 

H(x, y)=e—2xy sin(x2 — y2) 

is harmonic in Dz. 

EXAMPLE. A minor modification that as a point z=r exp(iθ0) (—n/2 < 

θ0 < n/2) travels outward from the origin along a ray θ=θ0 in the z plane, 

its image under the transformation 

w=Log z=lnr + iθ (r > 0, — n < θ < n) 

travels along the entire length of the horizontal line v=θ0 in the w plane. 

So the right half plane x > 0 is mapped onto the horizontal strip —n/2 < v 

< n/2. By considering the function 

h(u, v)=Im w=v, which is harmonic in the strip, and writing 

Log z=In \/x2 + v2 + z'arctan —, x 

where —n/2 < arctan t < n/2, we find that 

H(x, y)=arctan — is harmonic in the half plane x > 0. 

13.8 TRANSFORMATIONS OF 

BOUNDARY CONDITIONS 

The conditions that a function or its normal derivative have prescribed 

values along the boundary of a domain in which it is harmonic are the 

most common, although not the only, important types of boundary 

conditions. In this section, we show that certain of these conditions 

remain unaltered under the change of variables associated with a 

conformal transformation A boundary value problems. The basic 

technique there is to transform a given boundary value problem in the xy 

plane into a simpler one in the uv plane and then to use the theorems of 
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this to write the solution of the original problem in terms of the solution 

obtained for the simpler one. 

Theorem. Suppose that a transformation w=f(z)=u(x, y) + iv(x,y) 

is conformal on a smooth arc C, and let T be the image of C under that 

transformation. If a function h(u, v) satisfies either of the conditions 

dh h=ho or —=0 dn 

along T , where ho is a real constant and dh/dn denotes derivatives 

normal to T, then the function 

H(x,y)=h[u(x,y),v(x,y)] satisfies the corresponding condition 

along C, where dH/dN denotes derivatives normal to C. 

To show that the condition h=ho on T implies that H=ho on C, we note 

from equation that the value of H at any point (x,y) on C is the same as 

the value of h at the image (u, v) of (x, y) under transformation point (u, 

v) lies on T and since h=h0 along that curve, it follows that H=h0 along 

C. 

Suppose, on the other hand, that dh/dn=0 on T. From calculus, we know 

that 

dh —=(grad h) ■ n, dn 

where grad h denotes the gradient of h at a point (u,v) on T and n is a 

unit vector normal to T at (u, v). Since dh/dn=0 at (u, v), equation tells us 

that grad h is orthogonal to n at (u,v). That is, grad h is tangent to T there 

But gradients are orthogonal to level curves; and, because grad h is 

tangent to T, we see that T is orthogonal to a level curve h(u, v)=c 

passing through (u, v). v 

grad h h(u, v)=c 

Now, according to equation, the level curve H(x,y)=c in the z plane can 

be written 

h[u(x, y), v(x, y)]=c ; 
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and so it is evidently transformed into the level curve h(u,v)=c under 

transformation. Furthermore, since C is transformed into T and T is 

orthogonal to the level curve h(u,v)=c, as demonstrated in the preceding 

paragraph, it follows from the conformality of transformation that C is 

orthogonal to the level curve H(x, y)=c at the point (x, y) corresponding 

to (u, v). Because gradients are orthogonal to level curves, this means 

that grad H is tangent to C at (x, y) Consequently, if N denotes a unit 

vector normal to C at (x,y), grad H is orthogonal to N. That is, 

(grad H) ■ N=0. 

Finally, since 

dH  = (grad H) ■ N, dN B 2 

we may conclude from equation that dH/dN=0 at points on C. 

In this discussion, we have tacitly assumed that grad h=0. If grad h=0, it 

follows from the identity 

Igrad H(x,y)\=Igrad h(u,v)\\f '(z)\, 

derived in of this section, that grad H=0; hence dh/dn and the 

corresponding normal derivative dH/dN are both zero. We have also 

assumed that 

grad h and grad H always exist; 

the level curve H(x, y)=c is smooth when grad h=0 at (u, v). 

Condition ensures that angles between arcs are preserved by 

transformation when it is conformal. In all of our applications be 

satisfied. 

EXAMPLE. Consider, for instance, the function h(u, v)=v + 2. The 

transformation 

w=iz2=—2xy + i(x2 — y2) 

is conformal when z=0. It maps the half line y=x (x > 0) onto the 

negative u axis, where h=2, and the positive x axis onto the positive v 
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axis, where the normal derivative hu is 0. According to the above 

theorem, the function 

H(x,y)=x2 — y2 + 2 

must satisfy the condition H=2 along the half line y=x (x > 0) and Hy=0 

along the positive x axis, as one can verify directly. 

A boundary condition that is not of one of the two types mentioned in the 

theorem may be transformed into a condition that is substantially 

different from the original one  New boundary conditions for the 

transformed problem can be obtained for a particular transformation in 

any case. It is interesting to note that under a conformal transformation, 

the ratio of a directional derivative of H along a smooth arc C in the z 

plane to the directional derivative of h along the image curve Y at the 

corresponding point in the w plane is \f'(z)\; usually, this ratio is not 

constant along a given arc. 

EXERCISES 

Use expression to find a harmonic conjugate of the harmonic function 

u(x,y)=x3 — 3xy2. Write the resulting analytic function in terms of the 

complex variable z. 

Let u(x, y) be harmonic in a simply connected domain D. By appealing 

to results show that its partial derivatives of all orders are continuous 

throughout that domain. 

The transformation w=exp z maps the horizontal strip 0 < y < n onto the 

upper half plane v > 0, and the function 

h(u, v)=Re(w2)=u2 — v2 

is harmonic in that half plane. show that the function H(x, y)=e2x cos 2y 

is harmonic in the strip. Verify this result directly. 

Under the transformation w=exp z, the image of the segment 0 < y < n of 

the y axis is the semicircle u2 + v2=1,v > 0 (see Sec. 14). Also, the 

function 

h{u, v)=Re(^2 — w H ̂ =2 — u H—  y 
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\ w/ u2 + v2 

is harmonic everywhere in the w plane except for the origin; and it 

assumes the value h=2 on the semicircle. Write an explicit expression for 

the function H(x, y) Then illustrate the theorem by showing directly that 

H=2 along the segment 0 < y < n of the y axis.  

The transformation w=Z2 maps the positive x and y axes and the origin in 

the z plane onto the u axis in the w plane. Consider the harmonic 

function 

h(u, v)=Re(e—w)=e— cos v, 

and observe that its normal derivative hv along the u axis is zero. Then 

illustrate the when f(z)=Z2 by showing directly that the normal derivative 

of the function H(x, y) defined in that theorem is zero along both positive 

axes in the z plane. (Note that the transformation w=Z2 is not conformal 

at the origin.) 

Replace the function h(u, v) in by the harmonic function 

h(u, v)=Re(-2iw + e—w)=2v + e—u cos v. 

Then show that hv=2 along the u axis but that Hy=4x along the positive x 

axis and Hx=4y along the positive y axis. This illustrates how a condition 

of the type is not necessarily transformed into a condition of the type 

dH/dN=ho. 

Show that if a function H(x, y) is a solution of a Neumann H(x,y) + A, 

where A is any real constant, is also a solution of that problem. 

Suppose that an analytic function w=f(z)=u(x,y) + iv(x,y) maps a domain 

Dz in the z plane onto a domain Dw in the w plane; and let a function 

h(u, v), with continuous partial derivatives of the first and second order, 

be defined on Dw. Use the chain rule for partial derivatives to show that 

if H(x, y)=h[u(x, y), v(x, y)], then 

Hxx(x, y) + Hyy(x, y)=[huu(u, v) + hvv(u, v)] |f'(z)|2. 
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Conclude that the function H(x,y) is harmonic in Dz when h(u, v) is 

harmonic in Dw. This is an alternative proof of the theorem in Sec. 105, 

even when the domain Dw is multiply connected. 

Suggestion: In the simplifications, it is important to note that since f is 

analytic, the Cauchy-Riemann equations ux=vy,uy=—vx hold and that 

the functions u and v both satisfy Laplace's equation. Also, the continuity 

conditions on the derivatives of h ensure that hvu=huv. 

Let p(u,v) be a function that has continuous partial derivatives of the first 

and second order and satisfies Poisson's equation 

puu(u, v) + pvv(u, v)=<&(u, v) 

in a domain Dw of the w plane, where ® is a prescribed function. Show 

how it follows from the identity obtained in Exercise 8 that if an analytic 

function 

w=f(z)=u(x, y) + iv(x, y) 

maps a domain Dz onto the domain Dw, then the function 

P(x, y)=p[u(x, y), v(x, y)]  

satisfies the Poisson equation  

Pxx(x, y) + Pyy(x, y)=®[u(x, y), v(x, y)] \f '{z)\2 in Dz. 

Suppose that w=f(z)=u(x, y) + iv(x, y) is a conformal mapping of a 

smooth arc C onto a smooth arc T in the w plane. Let the function h(u, v) 

be defined on T, and write 

H(x, y)=h[u(x, y), v(x, y)]. 

From calculus, we know that the x and y components of grad H are the 

partial derivatives Hx and Hy, respectively; likewise, grad h has 

components hu and hv. By applying the chain rule for partial derivatives 

and using the Cauchy-Riemann equations, show that if (x, y) is a point 

on C and (u, v) is its image on T, then \grad H(x, y)\=|grad h(u, v)\\f''(z)\. 

13.9 TWO-DIMENSIONAL FLUID FLOW 

file:///C:/Users/Avi/Desktop/CA%20II/CA%20CH%2013.docx%23bookmark26
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Harmonic functions play an important role in hydrodynamics and 

aerodynamics. Again, we consider only the two-dimensional steady-state 

type of problem. That is, the motion of the fluid is assumed to be the 

same in all planes parallel to the xy plane, the velocity being parallel to 

that plane and independent of time. It is, then, sufficient to consider the 

motion of a sheet of fluid in the xy plane. 

We let the vector representing the complex number 

V=p + iq denote the velocity of a particle of the fluid at any point (x,y); 

hence the x and y components of the velocity vector are p(x,y) and 

q(x,y), respectively. At points interior to a region of flow in which no 

sources or sinks of the fluid occur, the real-valued functions p(x,y) and 

q(x,y) and their first-order partial derivatives are assumed to be 

continuous. 

The circulation of the fluid along any contour C is defined as the line 

integral with respect to arc length a of the tangential component VT(x,y) 

of the velocity vector along C: 

J Vt(x, y) da. 

The ratio of the circulation along C to the length of C is, therefore, a 

mean speed of the fluid along that contour. It is shown in advanced 

calculus that such an integral can be written 

/ Vt(x, y) da=p(x,y) dx + q(x,y) dy. 

When C is a positively oriented simple closed contour lying in a simply 

connected domain of flow containing no sources or sinks, Green's 

theorem enables us to write 

/ p(x,y) dx + q(x,y) dy=[qx(x,y) - py(x,y)] dA, Jc J Jr 

where R is the closed region consisting of points interior to and on C. 

Thus 

/ Vt(x, y) da=/ [qx(x,y) - py(x,y)] dA Jc J Jr 

for such a contour 
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A physical interpretation of the integrand on the right in expression for 

the circulation along the simple closed contour C is readily given. We let 

C denote a circle of radius r which is centered at a point (x0, y0) and 

taken counterclockwise.  

The mean speed along C is then found by dividing the circulation by the 

circumference 2nr, and the corresponding mean angular speed of the 

fluid about the center of the circle is obtained by dividing that mean 

speed by r: 

1 IIr \^lx(x'y) ~Py(x-y^dA- nr2 J Jr 2 

Now this is also an expression for the mean value of the function 

co(x, y)=^ [qx(x, y) - py(x, y)] 

over the circular region R bounded by C. Its limit as r tends to zero is the 

value of rn at the point (x0, y0). Hence the function rn(x, y), called the 

rotation of the fluid, represents the limiting angular speed of a circular 

element of the fluid as the circle shrinks to its center (x,y), the point at 

which rn is evaluated. 

If rn(x,y)=0 at each point in some simply connected domain, the flow is 

irrotational in that domain. We consider only irrotational flows here, and 

we also assume that the fluid is incompressible and free from viscosity. 

Under our assumption of steady irrotational flow of fluids with uniform 

density p, it can be shown that the fluid pressure P(x,y) satisfies the 

following special case of Bernoulli's equation: 

- + \\y\2=c p2 

where c is a constant. Note that the pressure is greatest where the speed | 

V | is least. 

Let D be a simply connected domain in which the flow is irrotational. 

Accord- ing to equation py=qx throughout D. This relation between 

partial derivatives implies that the line integral (xo, yo) is changed. The 

level curves $(x, y)=c\ are called equipotentials. Because it is the 

gradient of $(x,y), the velocity vector V is normal to an equipotential at 

any point where V is not the zero vector. 
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Just as in the case of the flow of heat, the condition that the 

incompressible fluid enter or leave an element of volume only by 

flowing through the boundary of that element requires that $(x,y) must 

satisfy Laplace's equation 

<Pxx(x, y) + &yy(x, y)=0 

in a domain where the fluid is free from sources or sinks. In view of 

equations  and the continuity of the functions p and q and their first-order 

partial derivatives, it follows that the partial derivatives of the first and 

second order of $ are continuous in such a domain. Hence the velocity 

potential $ is a harmonic function in that domain. 

13.10 THE STREAM FUNCTION 

 

According to the velocity vector 

V=p(x, y) + iq(x, y) 

for a simply connected domain in which the flow is irrotational can be 

written 

V=$x(x, y) + i$y(x, y)=grad $(x, y), 

where $ is the velocity potential. When the velocity vector is not the zero 

vector, it is normal to an equipotential passing through the point (x,y). If, 

moreover, f(x,y) denotes a harmonic conjugate of $(x, y), the velocity 

vector is tangent to a curve f(x,y)=C2. The curves f(x,y)=C2 are called 

the streamlines of the flow, and the function f is the stream function. In 

particular, a boundary across which fluid cannot flow is a streamline. 

The analytic function 

F(z)=$(x,y)+if(x,y) is called the complex potential of the flow. Note that 

F'(z)=$x(x,y)+ifx(x,y) and, in view of the Cauchy-Riemann equations, 

F'(z)=$x(x,y)-i$y(x,y). Expression for the velocity thus becomes 

V=F '(z). 
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The speed, or magnitude of the velocity, is obtained by writing 

|V |=\F'(z)\. 

According to equation if <p is harmonic in a simply connected domain 

D, a harmonic conjugate of $ there can be written 

r (x,y) 

ty(x,y)=I -$t(s,t)ds + $s(s,t) dt, 

J (x0,y0) 

where the integration is independent of path. With the aid of equations 

we can, therefore, write 

f(x,y)=L -q(s, t) ds + p(s, t) dt, 

where C is any contour in D from (x0, y0) to (x,y). 

Now it is shown in advanced calculus that the right-hand side of equation  

represents the integral with respect to arc length a along C of the normal 

compo- nent VN(x, y) of the vector whose x and y components are p(x,y) 

and q(x,y), respectively. So expression can be written 

f(x,y)=C Vn(s, t) da. 

Physically, then, ty(x,y) represents the time rate of flow of the fluid 

across C. More precisely, ty(x,y) denotes the rate of flow, by volume, 

across a surface of unit height standing perpendicular to the xy plane on 

the curve C. 

EXAMPLE. When the complex potential is the function 

F(z)=Az , where A is a positive real constant, 

$(x, y)=Ax and ^(x, y)=Ay. 

The streamlines ty(x,y)=C2 are the horizontal lines y=C2/A, and the 

velocity at any point is 

V =1^U )=A. 



Notes 

152 

Here a point (x0, y0) at which ft(x,y)=0 is any point on the x axis. If the 

point (x0, y0) is taken as the origin, then ft(x,y) is the rate of flow across 

any contour drawn from the origin to the point (x, y). The flow is 

uniform and to the right. It can be interpreted as the uniform flow in the 

upper half plane bounded by the x axis, which is a streamline, or as the 

uniform flow between two parallel lines y=y1 and y=y^y 

(yy) T V 

The stream function ty characterizes a definite flow in a region. The 

question of whether just one such function exists corresponding to a 

given region, except possi- bly for a constant factor or an additive 

constant, is not examined here. Sometimes, when the velocity is uniform 

far from the obstruction or when sources and sinks are involved, the 

physical situation indicates that the flow is uniquely determined by the 

conditions given in the problem. 

A harmonic function is not always uniquely determined, even up to a 

constant factor, by simply prescribing its values on the boundary of a 

region. In the example above, the function ty(x,y)=Ay is harmonic in the 

half plane y > 0 and has zero values on the boundary. The function ty\(x, 

y)=Be8siny also satisfies those conditions. However, the streamline 

ty\(x,y)=0 consists not only of the line y=0 but also of the lines y=nn 

(n=1, 2,...). Here the function F\(z)=Bez is the complex potential for the 

flow in the strip between the lines y=0 and y=n, both lines making up the 

streamline ty(x,y)=0; if B > 0, the fluid flows to the right along the lower 

line and to the left along the upper one. 

13.11 FLOWS AROUND A CORNER AND 

AROUND A CYLINDER 

In analyZ1ng a flow in the xy, or z, plane, it is often simpler to consider 

a corresponding flow in the uv, or w, plane. Then, 

potential and ty a stream function for the flow in the uv plane, can be 
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applied to these harmonic functions. That is, when the domain of flow 

Dw in the uv plane is the image of a domain Dz under a transformation 

w=f(z)=u(x, y) + iv(x, y), where f is analytic, the functions 

$[u(x,y),v(x,y)] and ty [u(x, y), v(x, y)] 

are harmonic in Dz. These new functions may be interpreted as velocity 

potential and stream function in the xy plane. A streamline or natural 

boundary ty(u,v)=ci in the uv plane corresponds to a streamline or 

natural boundary ty[u(x, y), v(x, y)]=C2 in the xy plane. 

In using this technique, it is often most efficient to first write the 

complex potential function for the region in the w plane and then obtain 

from that the velocity potential and stream function for the corresponding 

region in the xy plane. More precisely, if the potential function in the uv 

plane is 

F(w)=$(u, v) + ity(u, v), 

the composite function 

F[f(z)]=$[u(x, y), v(x, y)] + ity[u(x, y), v(x, y)] is the desired complex 

potential in the xy plane. 

In order to avoid an excess of notation, we use the same symbols F, <p, 

and ^for the complex potential, etc., in both the xy and the uv planes. 

EXAMPLE . Consider a flow in the first quadrant x > 0, y > 0 that comes 

in downward parallel to the y axis but is forced to turn a corner near the 

origin,. To determine the flow, that the transformation 

2 2 2 , •<-> w=z=x — y + i2xy 

maps the first quadrant onto the upper half of the uv plane and the 

boundary of the quadrant onto the entire u axis. From complex potential 

for a uniform flow to the right in the upper half of the w plane is F=Aw, 

where A is a positive real constant. The potential in the quadrant is, 

therefore, 

F=Az2=A(x2 — y2) + i2Axy; and it follows that the stream function for 

the flow there is 



Notes 

154 

= 2Axy. 

This stream function is, of course, harmonic in the first quadrant, and it 

vanishes on the boundary. 

The streamlines are branches of the rectangular hyperbolas 

2Axy=C2. 

According to equation, the velocity of the fluid is 

V=2 Az=2A(x — iy). 

Observe that the speed   

|V|=2 A^Jx1 + v2 

of a particle is directly proportional to its distance from the origin. The 

value of the stream function at a point (x, y) can be interpreted as the rate 

of flow across a line segment extending from the origin to that point. 

EXAMPLE. Let a long circular cylinder of unit radius be placed in a 

large body of fluid flowing with a uniform velocity, the axis of the 

cylinder being perpendicular to the direction of flow. To determine the 

steady flow around the cylinder, we represent the cylinder by the circle 

x2 + y2=1 and let the flow distant from it be parallel to the x axis and to 

the right. Symmetry shows that points on the x axis exterior to the circle 

may be treated as boundary points, and so we need to consider only the 

upper part of the figure as the region of flow. 

The boundary of this region of flow, consisting of the upper semicircle 

and the parts of the x axis exterior to the circle, is mapped onto the entire 

u axis by the transformation 

The region itself is mapped onto the upper half plane v > 0, as indicated  

The complex potential for the corresponding uniform flow in that half 

plane is F=Aw, where A is a positive real constant. Hence the complex 

potential for the region exterior to the circle and above the x axis is The 

velocity approaches A as |z| increases. Thus the flow is nearly uniform 

and parallel to the x axis at points distant from the circle, as one would 

expect. From expression we see that V(z)=V(z): hence that expression 
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also represents velocities of flow in the lower region, the lower 

semicircle being a streamline. 

According to equation, the stream function for the given problem is, in 

polar coordinates, 

1fr=A[r ) sin0. 

The streamlines 

A ( r ) sin 6>=c2 

are symmetric to the y axis and have asymptotes parallel to the x axis. 

Note that when C2=0, the streamline consists of the circle r=1 and the 

parts of the x axis exterior to the circle. 

Check your Progress-1 

Discuss Conformal Mapping 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Transformations of Boundary Conditions  

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

13.12 LET US SUM UP 

In this unit we have discussed the definition and example of Conformal 

Mapping, Preservation Of Angles, Scale Factors, Local Inverses, 

Harmonic Conjugates, Transformations Of Harmonic Functions, 

Transformations Of Boundary Conditions, Two-Dimensional Fluid Flow, 

The Stream Function, Flows Around A Corner And Around A Cylinder 
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13.13 KEYWORDS 

Conformal Mapping  In this chapter, we introduce and develop the 

concept of a conformal mapping, with emphasis on connections between 

such mappings and harmonic functions 

Preservation Of Angles  Let C be a smooth arc represented by the 

equation z=z(t) (a < t < b) 

Scale Factors  Another property of a transformation w=f(z) that is 

conformal at a point z0 is obtained by considering the modulus of f '(zo) 

Local Inverses   A transformation w=f(z) that is conformal at a point Z0 

has a local inverse there. That is, if W0=f(z0), then there exists a unique 

transformation z=g(w) 

Harmonic Conjugates   If a function f(z)=u(x, y) + iv(x, y) is analytic in a 

domain D 

Transformations Of Harmonic Functions   The problem of finding a 

function that is harmonic in a specified domain and satisfies prescribed 

conditions on the boundary of the domain is prominent in applied 

mathematics 

Transformations Of Boundary Conditions   The conditions that a 

function or its normal derivative have prescribed values along the 

boundary of a domain in which it is harmonic are the most common, 

although not the only, important types of boundary conditions. 

Two-Dimensional Fluid Flow   Harmonic functions play an important 

role in hydrodynamics and aerodynamics. 

The Stream Function    According to the velocity vector V=p(x, y) + 

iq(x, y) 

Flows Around A Corner And Around A Cylinder   In analyZ1ng a flow 

in the xy, or z, plane, it is often simpler to consider a corresponding flow 

in the uv, or w, plane. 
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13.14 QUESTIONS FOR REVIEW 

Explain Conformal Mapping 

Explain Transformations Of Boundary Conditions 

 

13.15 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Conformal Mapping   (answer for Check your Progress-1 

Q) 

Transformations of Boundary Conditions 

       (answer for Check your Progress-1 

Q) 
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UNIT-14 : SCHWARZ-CHRISTOFFEL 

TRANSFORMATION  

STRUCTURE 

14.0 Objectives 

14.1 Introduction 

14.2 Schwarz-Christoffel Transformation  

14.3 Triangles And Rectangles 

14.4 Integral Formulas Of The Poisson Type 

14.5 Poisson Integral Formula 

14.6 Dirichlet Problem For A Disk 

14.7 Schwarz Integral Formula 

14.8 Dirichlet Problem For A Half Plane 

14.9 Neumann Problems 

14.10 Let Us Sum Up   

14.11 Keywords   

14.12 Questions For Review   

14.13 Answers To Check Your Progress 

14.14 References  

14.0 OBJECTIVES 

 

After studying this unit, you should be able to: 

 

Learn, Understand about Schwarz-Christoffel Transformation  

Triangles And Rectangles 

Integral Formulas Of The Poisson Type 
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Poisson Integral Formula 

Dirichlet Problem For A Disk 

Schwarz Integral Formula 

Dirichlet Problem For A Half Plane 

Neumann Problems 

14.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis .  

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Schwarz-Christoffel Transformation, Triangles And Rectangles, Integral 

Formulas Of The Poisson Type, Poisson Integral Formula, Dirichlet 

Problem For A Disk, Schwarz Integral Formula, Dirichlet Problem For A 

Half Plane, Neumann Problems 

14.2 SCHWARZ-CHRISTOFFEL 

TRANSFORMATION 

In our expression f'(z)=A(z — X1)—k1 (z — X2)—k2 ■■■(z — Xn — 

1 )—kn—1 

for the derivative of a function that is to map the x axis onto a polygon, 

let the factors (z — Xj)—kj (j=1, 2,... ,n — 1) represent branches of 

power functions with branch cuts extending below that axis. To be 

specific, write 

(z — Xj)—kj=exp[—kj log(z — Xj)]=exp[—kj(ln |z — Xj | + iQj)] 

and then 

(z - Xj)~ki=|z - Xj\~ki expl-ikjOj) < 9j < , 

where Qj=arg(z — Xj) and j=1, 2,... ,n — 1. This makes f'(z) analytic 

every where in the half plane y > 0 except at the n — 1 branch points Xj. 
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If z0 is a point in that region of analyticity, denoted here by R, then the 

function 

F(z)=f f '(s) ds J10 

is single-valued and analytic throughout the same region, where the path 

of inte- gration from z0 to z is any contour lying within R. Moreover, 

F'(z)=f '(z) To define the function F at the point z=X1 so that it is 

continuous there, we note that (z — X1)—k1 is the only factor in 

expression that is not analytic at X1. Hence if $(z) denotes the product of 

the rest of the factors in that expression, $(z) is analytic at the point X1 

and is represented throughout an open disk 1Z X  < R1 by its Taylor 

series about X1. So we can write 

4>'(Xl) $ "(X\) 2 

0(-vr) H — U-jtiH y~(z~Xl) + or 

f '(z)=<p(xi)(z — xi)"kl + (z — xi)1-kl f(z), 

where ^ is analytic and therefore continuous throughout the entire open 

disk. Since l — k1 > 0, the last term on the right in equation thus 

represents a continuous function of z throughout the upper half of the 

disk, where Im z > 0, if we assign it the value zero at z=X1. It follows 

that the integral 

f (s — x1 )1—k1 f(s) ds Jz1 

of that last term along a contour from Z1 to z , where Z1 and the contour 

lie in the half disk, is a continuous function of z at z=X1. The integral 

(*-*!)-*! ds=  -Uz - -VI )!-A'l - (Z1 - JTi)1-*!] 

JZX 1 — k1 

along the same path also represents a continuous function of z at X1 if 

we define the value of the integral there as its limit as z approaches x1 in 

the half disk. The integral of the function along the stated path from Z1 to 

z is, then, continuous at z=X1; and the same is true of integral since it 

can be written as an integral along a contour in R from z0 to Z1 plus the 

integral from Z1 to z. 
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The above argument applies at each of the n — 1 points Xj to make F 

contin- uous throughout the region y > 0. 

From equation we can show that for a sufficiently large positive number 

R, a positive constant M exists such that if Im z > 0, then 

M 

|/ (z)| < kn whenever |z| > R. 

Since 2 — kn > 1, this order property of the integrand in equation 

ensures the existence of the limit of the integral there as z tends to 

infinity; that is, a number Wn exists such that 

lim F(z)=Wn (Im z > 0). 

Our mapping function, whose derivative is given by equation, can be 

written f(z)=F(z) + B, where B is a complex constant. The resulting 

transformation, 

w=a( (s — X1 )~k1 (s — X2)~kz ■■■ (s — Xn—1)—kn—1 ds + B, 

is the Schwarz-Christoffel transformation, named in honor of the two 

German math ematicians H. A. Schwarz (1843-1921) and E. B. 

Christoffel (1829-1900) who discovered it independently. 

Transformation is continuous throughout the half plane y > 0 and is 

conformal there except for the points Xj. We have assumed that the 

numbers kj satisfy 

conditions. In addition, we suppose that the constants xj and kj are such 

that the sides of the polygon do not cross, so that the polygon is a simple 

closed contour. Then, according to, as the point z describes the x axis in 

the positive direction, its image w describes the polygon P in the positive 

sense; and there is a one to one correspondence between points on that 

axis and points on P. According to condition, the image wn of the point 

z=*x> exists and wn=Wn + B. 

If z is an interior point of the upper half plane y > 0 and X0 is any point 

on the x axis other than one of the xj, then the angle from the vector t at 

X0 up to the line segment joining x0 and z is positive and less than n. At 

the image W0 of x0, the corresponding angle from the vector t to the 
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image of the line segment joining x0 and z has that same value. Thus the 

images of interior points in the half plane lie to the left of the sides of the 

polygon, taken counterclockwise. A proof that the transformation 

establishes a one to one correspondence between the interior points of the 

half plane and the points within the polygon is left to the reader  

Given a specific polygon P, let us examine the number of constants in the 

Schwarz-Christoffel transformation that must be determined in order to 

map the x axis onto P. For this purpose, we may write z0=0, A=1, and 

B=0 and simply require that the x axis be mapped onto some polygon P' 

similar to P. The size and position of P' can then be adjusted to match 

those of P by introducing the appropriate constants A and B. 

The numbers kj are all determined from the exterior angles at the vertices 

of P . The n — 1 constants xj remain to be chosen. The image of the x 

axis is some polygon P' that has the same angles as P. But if P' is to be 

similar to P, then n — 2 connected sides must have a common ratio to 

the corresponding sides of P; this condition is expressed by means of n 

— 3 equations in the n — 1 real unknowns xj. Thus two of the numbers 

xj, or two relations between them, can be chosen arbitrarily, provided 

those n — 3 equations in the remaining n — 3 unknowns have real-

valued solutions. 

When a finite point z=xn on the x axis, instead of the point at infinity, 

represents the point whose image is the vertex wn, it follows from tthat 

the Schwarz-Christoffel transformation takes the form 

where k1 + k2 + ..... + kn=2. The exponents kj are determined from the 

exterior angles of the polygon. But, in this case, there are n real constants 

xj that must satisfy the n — 3 equations noted above. Thus three of the 

numbers xj, or three conditions on those n numbers, can be chosen 

arbitrarily when transformation is used to map the x axis onto a given 

polygon. 

14.3 TRIANGLES AND RECTANGLES 

The Schwarz-Christoffel transformation is written in terms of the points 

xj and not in terms of their images, which are the vertices of the polygon. 
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No more than three of those points can be chosen arbitrarily; so, when 

the given polygon has more than three sides, some of the points xj must 

be determined in order to make the given polygon, or any polygon 

similar to it, be the image of the x axis. The selection of conditions for 

the determination of those constants that are convenient to use often 

requires ingenuity. 

Another limitation in using the transformation is due to the integration 

that is involved. Often the integral cannot be evaluated in terms of a 

finite number of elementary functions. In such cases, the solution of 

problems by means of the transformation can become quite involved. 

If the polygon is a triangle with vertices at the points W1, W2, and W3  

the transformation can be written 

w=A ( (s — xi )—k1 (s — X2)~k2 (s — X3)~k3 ds + B, 

where ki + Ay + £3=2. In terms of the interior angles Qj, 

kj=l--9j (7=1,2,3). n 

Here we have taken all three points xj as finite points on the x axis. 

Arbitrary values can be assigned to each of them. The complex constants 

A and B, which are associated with the size and position of the triangle, 

can be determined so that the upper half plane is mapped onto the given 

triangular region. 

If we take the vertex W3 as the image of the point at infinity, the 

transformation becomes 

w=a[ (s — x1)—k1 (s — x2)—k2 ds + B, 

Jzo 

where arbitrary real values can be assigned to x1 and x2. 

The integrals in equations do not represent elementary functions unless 

the triangle is degenerate with one or two of its vertices at infinity. The 

integral in equation becomes an elliptic integral when the triangle is equi- 

lateral or when it is a right triangle with one of its angles equal to either 

n/3 or n/4. 
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EXAMPLE. For an equilateral triangle, k\=kz=k=2/3. It is conve- nient 

to write x\=— 1, X2=1, and X3=<x and to use equation, with Z0=1, 

A=1, and B=0. The transformation then becomes 

w=J\s + 1)—2/3(s — 1)—2/3 ds. 

The image of the point z=1 is clearly w=0; that is, W2=0. If z=— 1 in 

this integral, one can write s=x, where —1 < x < 1. Then 

x + 1 > 0 and arg(x + 1)=0, 

while 

|x — 1|=1 — x and arg(x — 1)=n. 

Hence 

w= J (x + 1) —2/3(i _ ,v)~2/3 exp^— dx 

(ni\C1 2 dx = eXPUJio 

when z=—l- With the substitution a=+/t, the last integral here reduces to 

a special case of the one used in defining the beta function. Let b denote 

its value, which is positive: 

The vertex W1 is, therefore, the point  

uq=b exp —. 

The vertex W3 is on the positive u axis because 

U'3=/ (v + 1)—2/3(.v — l)-2/3 dx={x2d_\)Z/3- 

But the value of W3 is also represented by integral when z tends to 

infinity along the negative x axis; that is, 

j^ (\x + 1||-.v - 1|) 2/3exp^--^-^v 

+ J ^ (k + 111-v — 1| )_2/3 exp^—dx. 

In view of the first of expressions for W1, then, 

u>3=wi + exp^-^-^ j (|jt + l|k - 1|)~2/3dx ni ( ni\ dx 

= i,ex fY+exe{-T)lirvipvs-or 
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ni / ni\ 

w3=b exp — + w3 expl —— I. 

Solving for W3, we find that 

W3=b. 

We have thus verified that the image of the x axis is the equilateral 

triangle of side We can also see that 

b ni w=— exp — when ~=0. 

When the polygon is a rectangle, each kj=1/2. If we choose ±1 and ±a as 

the points xj whose images are the vertices and write 

g(z)=(z + a)—1/2(z + 1)-1/2(z - 1)-1/2(z - a)-1/2, 

where 0 < arg(z — xj) < n, the Schwarz-Christoffel transformation 

becomes 

w=— f g(s) ds, 

Jo 

except for a transformation W=Aw + B to adjust the size and position of 

the rectangle. Integral is a constant times the elliptic integral 

j\l-s2)-l/2(l-k2s2)-l/2 ds (*=£) 

but the form of the integrand indicates more clearly the appropriate 

branches of the power functions involved. 

EXAMPLE . Let us locate the vertices of the rectangle when a > 1,           

x\=—a, X2=—1, X3=1, and X4=a. All four vertices can be described in 

terms of two positive numbers b and c that depend on the value of a in 

the following manner : 

dx 

b=|g(x)| dx = 

( |g(x)| dx=f — 

Jo Jo J(1 
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fa fa dx 

C=Ji dx=J 

y (x2 — 1 )(a2 — x2) 

If — 1 < x < 0, then 

arg(x + a)=arg(x + 1)=0 and arg(x — 1)=arg(x — a)=n; hence 

/ 71A1 |y(.r)|=|y(x)|. 

g(x) = If —a < x < —1, then ni expl -y 

I g(x) |=i\g(x)\. 

Thus 

|g(x) | dx — i I |g(:x) | dx=—b + ic. 

It is left to the exercises to show that W2=—b, W3=b, W4=b + ic. 

The position and dimensions of the rectangle  

14.4 INTEGRAL FORMULAS OF THE 

POISSON TYPE 

In this chapter, we develop a theory that enables us to solve a variety of 

boundary value problems whose solutions are expressed in terms of 

definite or improper integrals. Many of the integrals occurring are then 

readily evaluated. 

14.5 POISSON INTEGRAL FORMULA 

Let C0 denote a positively oriented circle, centered at the origin, and 

suppose that a function f is analytic inside and on C0. The Cauchy 

integral formula expresses the value of f at any point z interior to C0 in 

terms of the values of f at points s on Q. In this section, we shall obtain 

from formula a corresponding formula for the real component of the 

function f; and,we shall use that result to solve the Dirichlet problem for 

the disk bounded by C0. 
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We let r0 denote the radius of C0 and write z=r exp(76>), where 0 < r < 

r$ The inverse of the nonzero point z with respect to the circle is the 

point Z1 lying on the same ray from the origin as z and satisfying the 

condition |Z1 ||z|=r^. Because (r0/r) > 1, 

and this means that Z1 is exterior to the circle Co. According to the 

Cauchy-Goursat theorem, then, 

f(s)ds L 

/Co s — Z1 Hence 

f(z)=±t (— —)f(s)ds-, 

2ni Jc0\s - z s - Z1j 

and, using the parametric representation s=roexp(i^) (0 < <p < 2n) for 

Co, we have 

f (z)=—— f    —\f(s)d(p 

2n Jo \s - z s - Z1j 

where, for convenience, we retain the s to denote ro exp(ij>). Now 

4 je _ 4 _ Z1=—e =r 

and, in view of this expression for Z1 , the quantity inside the parentheses 

in equation 

can be written 

— 2 2 i^=-?- + J^=r*-r 

s—z s—s(s/z) s—z ' s—z 
s z

z


 An alternative form of the Cauchy 

integral formula is, therefore, 

f ^ „ 2n Jo |s - z|2 

when 0 < r < ro. This form is also valid when r=0; in that case, it reduces 

directly to 

1 C 2^ f{0)=^T 2n Jo 
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which is just the parametric form of equation with z=0. The quantity \s 

— z\ is the distance between the points s and z, and the law of cosines 

can be used to write  

\s — z\2=r0 — 2r0r cos(p — 6) + r2. 

Hence, if u is the real component of the analytic function f, it follows 

from formula that 

1 f2n (r02 — r 2)u(r0,4>) 

n(r,0)=— I    dtp (r < ro). 

2^ Jo rfi — 2ror cos(tp — 9) + r2 

This is the Poisson integral formula for the harmonic function u in the 

open disk bounded by the circle r=r0. 

Formula defines a linear integral transformation of u(r0 ,p) into u(r,6). 

The kernel of the transformation is, except for the factor 1/(2n), the real-

valued function 

P(ro, r, (p - 9) = 

r0 — 2r0r cos(f — 6) + r2 ' which is known as the Poisson kernel. In 

view of equation, we can also write 

r2 r2 

P(ro,r,<p-9 )=0 •s — z\2' 

and, since r < ro, it is clear that P is a positive function. Moreover, since 

z/Cs —z) and its complex conjugate z/(s — z) have the same real parts, 

we find from the second of equations that 

P(r0, r,<p — 9)=Re(^—  1  —^=Re^ ^^ 

s — z s — z s — z 

Thus P(r0,r,$ — 6) is a harmonic function of r and 6 interior to C0 for 

each fixed s on C0. From equation, we see that P(r ,r,p> — 6) is an even 

periodic function of <p — 6, with period 2n, and that its value is 1 when 

r=0. 
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The Poisson integral formula can now be written 

14.6 DIRICHLET PROBLEM FOR A DISK 

 

Let F be a piecewise continuous function of Q on the interval 0 < Q < 2n. 

The Poisson integral transform of F is defined in terms of the Poisson 

kernel P(r0, r , p — Q), introduced by means of the equation 

1 f2n lJ(r,6)=-— I P(r0.r.p - 0)F(p) dp (r < r0). 

2n J0 

In this section, we shall prove that the function U(r , Q) is harmonic 

inside the circle r=r0 and 

lim U(r, Q)=F(Q)  

r^r0 r<r0 

for each fixed Q at which F is continuous. Thus U is a solution of the 

Dirichlet problem for the disk r < r0 in the sense that U(r,Q) approaches 

the boundary value F(Q) as the point (r, Q) approaches (r0,Q) along a 

radius, except at the finite number of points (r0,Q) where discontinuities 

of F may occur. 

EXAMPLE. Before proving the statement in italics, let us apply it to find 

the potential V(r,Q) inside a long hollow circular cylinder of unit radius, 

split lengthwise into two equal parts, when V=1 on one of the parts and 

V=0 on the other. This problem was solved by conformal mapping; and 

we recall how it was interpreted there as a Dirichlet problem for the disk 

r < 1, where V=0 on the upper half of the boundary r=1 and V=1 on the 

lower half. y 

V=0 

V=1 

In equation, write V for U, r0=1, and 

}0 when 0 < < n, ()=11 when n < (p < 2n 
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to obtain 

-2n 1 r2 

V(r,9)=—J P(l,r,<p-e)d<p, where 

1 — r2 P(hr,4>-9)=  ——. 

1 + r2 — 2r cos(<p — 9) 

An antiderivative of P(1,r,ty) is 

j P( 1, r, \fr)d\fr=2 aiclan^ | ^ ' tan , 

the integrand here being the derivative with respect to ^ of the function 

on the right. So it follows from expression that 

(1 + r 2n — 9 \ (1 + r n — 9 

nV(r,9)=arctan  tan  I — arctan  tan  

\1 — r 2 j \1 — r 2 

After simplifying the expression for tan[nV(r, 9)] obtained from this last 

equation, we find that 

1 ( 1 r2 \ 

V(r,9)=- arctan  ) (0 < arctanf < n), 

n \2r sin9 j 

where the stated restriction on the values of the arctangent function is 

physically evident. When expressed in rectangular coordinates, the 

solution here is the same as solution. 

We turn now to the proof that the function U defined in equation satisfies 

the Dirichlet problem for the disk r < r^, as asserted just prior to this 

example. First of all, U is harmonic inside the circle r=r$ because P is a 

harmonic function of r and 9 there. More precisely, since F is piecewise 

continuous, integral can be written as the sum of a finite number of 

definite integrals each of which has an integrand that is continuous in r, 

9, and The partial derivatives of those integrands with respect to r and 9 

are also continuous. Since the order of integration and differentiation 
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with respect to r and 9 can, then, be interchanged and since P satisfies 

Laplace's equation 

r2 Prr + rPr + P99=0 

in the polar coordinates r and 9, it follows that U satisfies that equation 

too. 

In order to verify limit, we need to show that if F is continuous at 9, there 

corresponds to each positive number e a positive number S such that 

\U(r, 9) — F(9)\ < e whenever 0 < r0 — r < S. 

We start by referring to property of the Poisson kernel and writing 

1 r2n U(r,6) — F(6)=— I P(r„, r,<p~9) [F(4» - F(9)] dep. 

2n J0 

For convenience, we let F be extended periodically, with period 2n, so 

that the integrand here is periodic in $ with that same period. Also, we 

may assume that 0 < r < ro because of the nature of the limit to be 

established. 

Next, we observe that since F is continuous at Q, there is a small positive 

number a such that 

|F(ep) — F(9)| < - whenever \ep — 9\ < a. 

Evidently, 

U(r,Q) - F(Q)=h(r) + I2(r) where 

1 i-Q+a 

h(r)=— P(r0, r9<f> — 9) [F(</>) — F(#)] d(p, 

2n Jq-a 1 r Q -a+2n 

h(r)=— P(r0, r.ep — 9) [F(<P) - F(9)] dep.2n JQ+a 

The fact that P is a positive function, together with the first of 

inequalities of that function, enables us to write 

1 r Q+a \h(r)\ < — P(r0,r,4>-9)\F(4»-F(9)\d4> 
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2n Jq-a £ f2n £ 

^ to J0 P{ro,r-^ ~6) d<^=2' 

As for the integral h(r), that the denominator |s - z|2 in expression for 

P(ro,r,$ - Q) in that section has a (positive) minimum value m as the 

argument $ of s varies over the closed interval 

Q + a < $ < Q - a + 2n. 

So, if M denotes an upper bound of the piecewise continuous function 

\F($) - F(Q)\ on the interval 0 < $ < 2n, it follows that 

(rQ2 - r2)M 2Mro 2Mro £ 

\h(r)\ <  2ti <  (r0 - r) <  S=- 

2nm m m 2 

whenever ro - r < 8 where 

me 

S = 

Mro 

Finally, the results in the two preceding paragraphs tell us that 

ee 

\U(r,9)-F(9)\ < |/i(r)| + |/2(r)| < - + - =e 

whenever r0 — r < S, where S is the positive number defined by 

equation That is, statement holds when that choice of S is made. 

According to expression and since P(r0, 0,p — 9)=1, 

U(0,9)=^~ [ 2n J0 

Thus the value of a harmonic function at the center of the circle r=r0 is 

the average of the boundary values on the circle. 

It is left to the exercises to prove that P and U can be represented by 

series involving the elementary harmonic functions rn cos n9 and rn sin 

n9 as follows  
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^/r V 

P(ro,r,<p - Q)=l + 2^(—) cos n(p-Q) (r < r0) 

n=1 ^ 0' ^ ( r \n 

U(r,9)=-ao + ( — I (an cosn9 + b„ sinnt?) (r < ro), 

i\r0/ n=1 N 7 

where 1 f2n 1 f2n 

an=— I F (<p) cos tup dip, bn=— I F (ip) sintup dip. 

n J0 n J0 

for the electrostatic potential interior to a cylinder x2 + y2=1 when V=1 

on the first quadrant (x > 0,y > 0) of the cylindrical surface and V=0 on 

the rest of that surface. Also, point out why 1 — V is the solution  

Let T denote the steady temperatures in a disk r < 1, with insulated faces, 

when T=1 on the arc 0 < 9 < 290 (0 <90 < n/2) of the edge r=1 and T=0 

on the rest of the edge. Use the Poisson integral transform to show that 

 (1 _ x2 _ y2)y(j 

(x - l)2 + (V - yo)2 - }'o 

where y0=tan 90 . Verify that this function T satisfies the boundary 

conditions. Verify integration formula by differentiating the right- hand 

side there with respect to ty. 

Suggestion: The trigonometric identities 

2 ty 1 + cos ty 2 ty 1 — cos ty 

cos —= , sin —=  

2 2 2 2 

are useful in this verification. 

With the aid of the trigonometric identities 

tan a — tan f 2 
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tan (or — ft)=- , tana + coto1 = 

1 + tan a tan f ' sin 2a 

show how solution is obtained from the expression for nV(r, 0) just prior 

to that solution. 

Let I denote this finite unit impulse function: 

[ 1/h when 00 < 0 < 00 + h, 

I(h,0 — 00)=, 

10 when 0 < 0 < 00 or 00 + h < 0 < 2n, 

where h is a positive number and 0 < 00 <00 + h < 2n. Note that 

f 00+h  

I(h,0 — 00) d0=1. 

With the aid of a mean value theorem for definite integrals, show that 

r 2n n 00+h 

I P(r0,r,f — 0)I(h,f — 00) df=P(r0,r,c — 0)1 I(h,f — 00) df, 

0 00 

where 00 < c < 00 + h, and hence that p 2n 

lim I P(r0, r,f — 0) I(h, f — 00) df=P(r0, r,0 — 00) (r < r0). 

h^0 l0 h>0 J[i 

Thus the Poisson kernel P(r0, r,0 — 00) is the limit, as h approaches 0 

through positive values, of the harmonic function inside the circle r=r0 

whose boundary values are represented by the impulse function 2nI(h,0 

— 00). 

Show that the expression in for the sum of a certain cosine series can be 

written 

J _ a2 1 + 2 a" cos nO= -r (— 1 < a < 1). 

1-2a cos 9 + a2 n=1 
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14.7 SCHWARZ INTEGRAL FORMULA 

 

Let f be an analytic function of z throughout the half plane Im z > 0 such 

that for some positive constants a and M, the order property 

\zaf(z)\ <M (Imz > 0) 

is satisfied. For a fixed point z above the real axis, let CR denote the 

upper half of a positively oriented circle of radius R centered at the 

origin, where R > \z| Then, according to the Cauchy integral formula, 

1 f f(s) ds 1 rR f(t) dt 

fiz)=— J—— + — J--d—. 

2ni Jcr s - z 2m J_r t - z 

We find that the first of these integrals approaches 0 as R tends to ro 

since, in view of condition ensures that the improper integral here 

converges. The number to which it converges is the same as its Cauchy 

principal value and representation is a Cauchy integral formula for the 

half plane Im z > 0. 

When the point z lies below the real axis, the right-hand side of equation  

is zero; hence integral is zero for such a point. Thus, when z is above the 

real axis, we have the following formula, where c is an arbitrary complex 

constant: 

1 C/ 1 c \ 

f(z)=— (   + -—-)f(t)dt (Irn z > 0). 

2ni J_oo \t -z t -z) 

In the two cases c=— 1 and c=1, this reduces, respectively, to 

ra m 1 r yf(t) m 

f(z)=-   -y dt (y > 0) 

n J—TO \t — z|2 
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and 

1 f ~ (t — x)f(t) 

f(z)=— — dt (y > 0). 

ni J—TO \t — z\2 

If f(z)=u(x,y) + lv(x,y), it follows from formulas that the harmonic 

functions u and v are represented in the half plane y > 0 in terms of the 

boundary values of u by the formulas 

m , . 1 /■"»«.<>),_ If yult.O) 

- nL«* v ' and 

, x 1 f(x — t)u(t, 0) 

(S) «*•»-■; lv>0' 

ormula is known as the Schwarz integral formula, or the Poisson integral 

formula for the half plane. In the next section, we shall relax the 

conditions for the validity of formulas. 

14.8 DIRICHLET PROBLEM FOR A HALF 

PLANE 

Let F denote a real-valued function of x that is bounded for all x and 

continuous except for at most a finite number of finite jumps. When y > 

e and \x\< 1/e, where e is any positive constant, the integral 

00 F(t) dt 

oo (t-x)2 + y2 

converges uniformly with respect to x and y, as do the integrals of the 

partial derivatives of the integrand with respect to x and y. Each of these 

integrals is the sum of a finite number of improper or definite integrals 

over intervals where F is continuous; hence the integrand of each 

component integral is a continuous function of t, x, and y when y > e. 

Consequently, each partial derivative of I(x, y) is represented by the 

integral of the corresponding derivative of the integrand when- ever y > 

0. 
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If we write 

U(x,y)=-I(x,y), then U is the Schwarz integral transform of F, suggested 

by expression  

1 p COyF(t) 

m = (,»0). 

Except for the factor 1/n, the kernel here is y/\t — z\2. It is the imaginary 

component of the function 1/(t — z), which is analytic in z when y > 0. It 

follows that the kernel is harmonic, and so it satisfies Laplace's equation 

in x and y. Because the order of differentiation and integration can be 

interchanged, the function then satisfies that equation. Consequently, U 

is harmonic when y > 0. 

To prove that 

lim U(x,y)=F(x) 

y^0 y>0 

for each fixed x at which F is continuous, we substitute t=x + y tan t in 

integral and write 

1 rn/2 

U(x, y)=— I F(x + y tanr) dr (y > 0). 

n J—n/2 

As a consequence, if 

G(x, y, t)=F(x + y tan t) — F(x) 

and a is some small positive constant, 

r n/2 n [U (x, y) — F(x)]=G(x,y,T)dT=h(y) + h(y) + h(y) 

J —n/2 

where 

(—n/2)+a r (n/2)—a 

G(x, y, t) dT, I2(y) = G(x,y,T)dT, 
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-n/2 J (—n/2)+a f n/2 

I3(y) = G(x, y, t) dT. 

J (n/2)—a 

If M denotes an upper bound for \F(x*)|, then \G(x, y,T)\ < 2M. For a 

given positive number e, we select a so that 6Ma < e; and this means that   

e e 

|/i(y)| <2Ma<- and |/3(y)| < 2Ma < 

We next show that corresponding to e, there is a positive number S such 

that 

e\h(y)\ < j whenever 0 < y < 8. 

To do this, we observe that since F is continuous at x, there is a positive 

number Y such that 

\G(x, y, r)| < —- whenever 0 < y\ tan r| < y. 3n 

Now the maximum value of | tan t | as t ranges from 

n n  "hcf to — — cf 2 2 

(n \ tan a=cot a. \ 2 ) 

Hence, if we write S=y tan a, it follows that 

Ee |/2(v)| < —(n — 2a) < - whenever 0 < v < 5. 3n 3 

We have thus shown that 

IC(y)l + IL(y)l + IL(y)l <e whenever 0 < y < S. 

Condition now follows from this result and equation. 

Formula therefore solves the Dirichlet problem for the half plane y > 0, 

with the boundary condition. It is evident from the form of expression  

that IU(x,y)I < M in the half plane, where M is an upper bound of |F(x)|; 

that is,  

U is bounded. We note that U(x,y)=F0 when F(x)=F0 , where F0 is a 

constant. 
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According to formula under certain conditions on F the function 

1 f ~ (x - t)F(t) V(x, y)=—  dt (y > 0) 

n J_TO (t - x)2 + y2 

is a harmonic conjugate of the function U given by formula. Actually, 

formula furnishes a harmonic conjugate of U if F is everywhere 

continuous, except for at most a finite number of finite jumps, and if F 

satisfies an order property 

IxaF(x)I < M (a > 0). 

For, under those conditions, we find that U and V satisfy the Cauchy-

Riemann equations when y > 0. 

Special cases of formula when F is an odd or an even function  

EXERCISES 

Obtain as a special case of formula the expression1 

F(t) dt (x > 0,y > 0) 

_ (t — x)9 + y2 (t + x)2 + y2 _ 

for a bounded function U that is harmonic in the first quadrant and 

satisfies the boundary conditions 

U(0, y)=0 (y > 0), lim U(x,y)=F(x) (x > 0,x=xj), 

y^0 y>0 

where F is bounded for all positive x and continuous except for at most a 

finite number of finite jumps at the points xj (j=1, 2,..., n). 

Let T(x, y) denote the bounded steady temperatures in a plate x > 0,y > 0, 

with insulated faces, when 

lim T(x, y)=F1(x) (x > 0), 

y^0 y>0 lim T(x,y)=F2(y) (y > 0) x^0 x>0 
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Here F1 and F2 are bounded and continuous except for at most a finite 

number of finite jumps. Write x + iy=z and show with the aid of the 

expression obtained in Exercise  that 

T(x,y)=T1(x,y) + T2(x,y) (x > 0,y > 0)\it — z\2 \it + z\2 

(t — x)2 + y2 (t + x)2 + y2 

for a bounded function U that is harmonic in the first quadrant and 

satisfies the boundary conditions 

Ux(0,y)=0 (y > 0), 

lim U(x,y)=F(x) (x > 0,x=xi). y^0 y>0 

where F is bounded for all positive x and continuous except possibly for 

finite jumps at a finite number of points x=xj (j=1. 2.....n). 

Interchange the x and y axes  

1 rxF(t) 

Ui'-'''=*L 0-»)' + v'" ('*>0) 

of the Dirichlet problem for the half plane x > 0. Then write 

F(y)- I1 when yl < 1 

(y) |0 when |y| > 1. and obtain these expressions for U and its harmonic 

conjugate — V: 

U(x, y)=- farctan — - arctan ^ Y V(x, y)=In X] + + ^ \ x x )

 2n x10 + (y — 1)2 

where —n/2 < arctan t < n/2. Also, show that 

V(x, v) + iU(x, v)=— [Log(z + /) - Log(z - /)], n where z=x + iy. 

14.9 NEUMANN PROBLEMS 

we write 

s=r0exp(i<^) and z=r exp(i0) (r < r0). 
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When s is fixed, the function 

<2(r0. r. <p — 0)=—2r0 ln|s — z|=-r0ln[r02 — 2r0r cos(<£ — 0) + r2] is 

harmonic interior to the circle |z|=r0 because it is the real component of 

—2 r0 log (z — s). 

where the branch cut of log(z — s) is an outward ray from the point s. If, 

moreover, r=0, 

These observations suggest that the function Q may be used to write an 

integral representation for a harmonic function U whose normal 

derivative Ur on the circle r=r0 assumes prescribed values G(Q). 

If G is piecewise continuous and U0 is an arbitrary constant, the function 

1 f2n lJ(r,6)=-— I Q(r0,r,<p-0)G(<p) d<p + U0 (r < r0) 2n J0 

is harmonic because the integrand is a harmonic function of r and Q. If 

the mean value of G over the circle |z|=r0 is zero, so that 

p 2n / G(f) d$=0, 0 

then, in view of equation, 

1 p2n r 

Ur(r,0)=— —[P(r0,r,(p -0) -l]G((p) dip 2n J0 r r0 1 f2n = -•—/P(r$, r, <p 

— 0) G(<p) dtp. r 2n J0 

Now, according to equations, 

1 f2n lim — P(ro,r,<p-0)G(<p) d<p=G(0). r^ra 2n J0 

r<rQ 0 u 

Hence 

lim Ur(r,Q)=G(Q) 

r^r0 r<rg 

for each value of Q at which G is continuous. 

When G is piecewise continuous and satisfies condition (4), the formula 
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r C 2n U(r,0)=-^- \n[rl - 2r0rcos(</> - 0) + r2] G(cp) dip + t/0 (r < r0), 

2n J0 

therefore, solves the Neumann problem for the region interior to the 

circle r=r0 where G(Q) is the normal derivative of the harmonic function 

U(r,Q) at the bound- ary in the sense of condition. Note how it follows 

from equations and that since ln r0 is constant, U0 is the value of U at the 

center r=0 of the circle r=r0. 

The values U(r,Q) may represent steady temperatures in a disk r < r0 

with insulated faces. In that case, condition states that the flux of heat 

into the disk through its edge is proportional to G(Q). Condition is the 

natural phys- ical requirement that the total rate of flow of heat into the 

disk be zero, since temperatures do not vary with time. 

A corresponding formula for a harmonic function H in the region 

exterior to the circle r=r0 can be written in terms of Q as  

1 r2n H(R, f)=—— I Q(ro,R,4>-f)G(4»d4> + Ho (R > r0), 2n J0 

where Ho is a constant. As before, we assume that G is piecewise 

continuous and that condition holds. Then 

H0=lim H(R,f) R^to and 

lim HR(R,f )=G(f) R^r0 R>r0 

for each f at which G is continuous. Verification of formula, as well as 

special cases of formula that apply to semicircular regions, is left to the 

exercises. 

Turning now to a half plane, we let G(x) be continuous for all real x, 

except possibly for a finite number of finite jumps, and let it satisfy an 

order property 

\xaG(x)\ < M (a > 1) 

when —to < x < to. For each fixed real number t, the function Log\z — 

t\is har- monic in the half plane Im z > 0. Consequently, the function 

TO 
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U(x, y)=— I ln|z — t\ G(t) dt + t/0TO r(t — x)2 + y2 

(t + x)2 + y2 (mx.y)=±f In 2n J0 

This represents a function that is harmonic in the first quadrant x > 0, y > 

0 and satisfies the boundary conditions 

U(0,y)=0 (y > 0), 

lim Uy(x, y)=G(x) (x > 0). y^0 y>0 
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14.10 LET US SUM UP 

In this unit we have discussed the definition and example of Schwarz-

Christoffel Transformation, Triangles And Rectangles, Integral Formulas 

Of The Poisson Type, Poisson Integral Formula, Dirichlet Problem For A 

Disk, Schwarz Integral Formula, Dirichlet Problem For A Half Plane, 

Neumann Problems 

14.11 KEYWORDS 

Schwarz-Christoffel Transformation  In our expression f'(z)=A(z — 

X1)—k1 (z — X2)—k2 ■■■(z — Xn — 1 )—kn—1 
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Triangles And Rectangles    The Schwarz-Christoffel transformation is 

written in terms of the points xj and not in terms of their images, which 

are the vertices of the polygon 

Integral Formulas Of The Poisson Type     In this chapter, we develop a 

theory that enables us to solve a variety of boundary value problems 

whose solutions are expressed in terms of definite or improper integrals. 

Many of the integrals occurring are then readily evaluated. 

Poisson Integral Formula     Let C0 denote a positively oriented circle, 

centered at the origin, and suppose that a function f is analytic inside and 

on C0. 

Dirichlet Problem For A Disk    Let F be a piecewise continuous function 

of Q on the interval 0 < Q < 2n. The Poisson integral transform of F is 

defined in terms of the Poisson kernel P(r0, r , p — Q), 

Schwarz Integral Formula    Let f be an analytic function of z throughout 

the half plane Im z > 0 such that for some positive constants a and M, the 

order property \zaf(z)\ <M (Imz > 0)  

Dirichlet Problem For A Half Plane     Let F denote a real-valued 

function of x that is bounded for all x and continuous except for at most a 

finite number of finite jumps  

Neumann Problems    we write s=r0exp(i<^) and z=r exp(i0) (r < r0) 

When s is fixed, the function 

14.12 QUESTIONS FOR REVIEW 

Explain Schwarz-Christoffel Transformation 

Explain Poisson Integral Formula 

 

14.13 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Schwarz-Christoffel Transformation   



Notes   
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Notes Notes 
(answer for Check your Progress-1 

Q) 

Poisson Integral Formula  (answer for Check your Progress-1 

Q) 
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